Hubungan Antara Kandungan Pati Resisten dan Kualitas Tanak Beras Siger (Tiwul Modifikasi)
DOI:
https://doi.org/10.25181/jppt.v18i1.355Keywords:
siger rice, cooking quality, resistant starch, modified tiwulAbstract
Resistant starch is a starch fraction that can not be hydrolyzed by digestive enzymes in the small intestine and classified as a prebiotic compound. Increasing the content of resistant starch to a certain amount in Siger Rice (modified tiwul) will decrease the cooking quality. The objective of this research was to study the relationship between resistant starch content and cooking quality of Siger Rice (eating quality, texture, and taste). The increase of resistant starch content in siger rice was done by the application of autoclaving-cooling cycling treatment, through steam stages, cooling to room temperature, followed by cooling at 4°C for 0 hours/control, 12 hours, 24 hours, 36 hours and 48 hours. The results showed that the increase of resistant starch content ≤ 10% (9.85%) will improve the quality characteristics of Siger Rice for all organoleptic scores, i.e., eating quality (7,15 to 8,2), texture (7.05 to 8.35), and flavor (6.95 to 8.15); on the contrary, the increase of resistant starch content more than 10% (14.25%) will decrease the cooking quality characteristics of Siger Rice for all organoleptic scores, i.e., eating quality (7.15 to 6.8), texture (7.05 to 6.6), and taste (6.95 to 6.4).Downloads
References
Alsaffar, A.A., 2011. Effect of food processing on the resistant starch content of cereals and cereal products – a review. International Journal of Food Science and Technology, 3, pp.455–462.
Asghar, S. et al., 2012. Cooking and eating characteristics of Rice ( Oryza sativa L . ) - A review. Pakistan Journal of Food Sciences, 22(3), pp.128–132.
Ashwar, B.A. et al., 2016. Production of resistant starch from rice by dual autoclaving-retrogradation 1 treatment: 2 Invitro digestibility, thermal and structural characterization. Food Hydrocolloids, 56, pp.108–117.
Dundar, A.N. and & Gocmen, D., 2013. Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydrate Polymers, 97(2), pp.764–771.
Fuentes-Zaragoza, E. et al., 2011. Resistant starch as prebiotic: A review. Starch/Staerke, 63(7), pp.406–415.
Haralampu, S.., 2000. Resistant starch—a review of the physical properties and biological impact of RS3. Carbohydrate Polymers, 41(3), pp.285–292.
Hidayat, B., Akmal, S., Surfiana, dan Suhada, B., 2016. Beras Siger (Tiwul/Oyek yang Telah Dimodernisasi) sebagai Pangan Fungsional dengan Kandungan Indeks Glikemik Rendah. Prosiding Seminar Nasional Pangan Fungsional dalam Rangka Memperingati Hari Tempe Nasional. pp. 57–66.
Hidayat, Beni., Akmal, S., Muslihudin, M., Suhada, B., 2017. Assessment of Corn-Based Rice Analogues Made from Modified Corn Flour and Cassava Starch Which Processed by Granulation Method as Functional Food. Food Science and Quality Management, 61, pp.19–24.
Hidayat, B., 2016. Prospek Pengembangan dan Teknologi Pengolahan Beras Siger, UP Politeknik Negeri Lampung.
Homayouni, A. et al., 2014. Resistant starch in food industry : A changing outlook for consumer and producer. Starch/Stärke, 66, pp.102–114.
Hsu, R.J. et al., 2015. Effects of cooking, retrogradation and drying on starch digestibility in instant rice making. Journal of Cereal Science, 65, pp.154–161.
Lockyer, S. and & Nugent, A.P., 2017. Health effects of resistant starch. Nutrition bulletin, 42(1), pp.10–41.
Lyumugabe, F.X., Tuyishime, M.A., Ntakirutimana, C., Harimana, Y. & Hitabatuma, A., 2017. Latest Development Of Slowly Digestible Starch And Resistant Starch starch is. Journal of Multidisciplinary Engineering Science Studies (JMESS), 3(8), pp.2024–2037.
Raigond, P. et al., 2015. Resistant Starch in Food : A Review. Journal of the Science of Food and Agriculture, 95(10), pp.1968–1978.
Soekarto, S.T., 1985. Penilaian Organoleptik untuk Industri Pangan dan Hasil Pertanian, Jakarta: Penerbit Bhratara.
Zhao, X.H. and Lin, Y., 2009. The impact of coupled acid or pullulanase debranching on the formation of resistant starch from maize starch with autoclaving – cooling cycles. Eur. Food Res. Technol, 230, pp.179–184.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi-BerbagiSerupa 4.0 Internasional.