Perubahan Produksi dan Perdagangan Negara-negara Produsen Lada Terbesar di Dunia dan Implikasinya bagi Indonesia
DOI:
https://doi.org/10.25181/jaip.v11i1.2627Keywords:
agribusiness, macro indicators, pepper, production, tradeAbstract
The production and trade of agricultural products in global markets will undergo changes due to shifts in demand and production patterns. Although demand for pepper is likely to remain strong, pepper production is prone to fluctuations due to various factors, particularly natural ones. This study aims to predict future changes in the production and trade of the world's largest pepper-producing countries and identify macro-level improvements needed to enhance the pepper production and trade system in Indonesia. Using time-series analysis (i.e., double exponential smoothing) with FAOSTAT data from 1961-2020, this study predicts that the competitive landscape among pepper-producing countries is likely to change over the next 15 years. Some producing countries may overtake others in terms of pepper production and trade. Consequently, Indonesia needs to respond to these changes by implementing various sectoral-level improvements, such as investing in sustainable development, improving infrastructure, and addressing political factors, in addition to improving farmer-level practices.Downloads
References
Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1367–1375. https://doi.org/10.12928/TELKOMNIKA.V17I3.11768
Akbar, S. (2020). Piper nigrum L.(Piperaceae). In Handbook of 200 Medicinal Plants (pp. 1437–1442). Springer.
Alhindawi, R., Nahleh, Y. A., Kumar, A., & Shiwakoti, N. (2020). Projection of greenhouse gas emissions for the road transport sector based on multivariate regression and the double exponential smoothing model. Sustainability (Switzerland), 12(21), 1–18. https://doi.org/10.3390/su12219152
Anggraini, N., Evizal, R., & Septiana, L. M. (2021). Karakteristik Pertumbuhan Melada dan Lada Sambung. Jurnal Agrotropika, 20(2), 129. https://doi.org/10.23960/ja.v20i2.5322
ArunKumar, K. E., Kalaga, D. V., Sai Kumar, C. M., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Averag. Applied Soft Computing, 103, 107161. https://doi.org/10.1016/j.asoc.2021.107161
Asongu, S., Akpan, U. S., & Isihak, S. R. (2018). Determinants of foreign direct investment in fast-growing economies: evidence from the BRICS and MINT countries. Financial Innovation, 4(1), 1–17. https://doi.org/10.1186/s40854-018-0114-0
Aziza, J. N. A. (2022). Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services. Jurnal Teknologi Dan Manajemen Industri Terapan, 1(I), 35–41. https://doi.org/10.55826/tmit.v1ii.8
Basuki, A. T., Purwaningsih, Y., Mulyanto, & Susilo, A. M. (2019). The role of local government expenditure on economic growth: A review of panel data in Indonesia. Humanities and Social Sciences Reviews, 7(5), 1293–1303. https://doi.org/10.18510/hssr.2019.75168
Bathla, S., & Aggarwal, R. (2022). Targeting Public Investment in Agriculture for Higher Private Investment in Eastern India. Agricultural Research, 11(2), 330–339. https://doi.org/10.1007/s40003-021-00564-w
Bhasin, N., & Garg, S. (2020). Impact of Institutional Environment on Inward FDI: A Case of Select Emerging Market Economies. Global Business Review, 21(5), 1279–1301. https://doi.org/10.1177/0972150919856989
Bruce, K., & Costa, H. (2019). Enabling environment for PPPs in agricultural extension projects: Policy imperatives for impact. Journal of Rural Studies, 70, 87–95. https://doi.org/10.1016/j.jrurstud.2019.07.005
Dhamodharavadhani, S., & Rathipriya, R. (2019). Region-Wise Rainfall Prediction Using MapReduce-Based Exponential Smoothing Techniques. In Advances in Intelligent Systems and Computing (Vol. 750, pp. 229–239). Springer. https://doi.org/10.1007/978-981-13-1882-5_21
Direktorat Jenderal Perkebunan. (2020). Statistik Perkebunan Unggulan Nasional 2019-2021. https://drive.google.com/file/d/1ZpXeZogAQYfClNBOgVLhYi8X_vujJdHx/view?usp=sharing
Erbaugh, J., Bierbaum, R., Castilleja, G., da Fonseca, G. A. B., & Hansen, S. C. B. (2019). Toward sustainable agriculture in the tropics. World Development, 121, 158–162. https://doi.org/10.1016/j.worlddev.2019.05.002
Evizal, R. (2000). Pola budidaya lada sistem panjatan hidup di Propinsi Lampung. Jurnal Agrotropika, 5(2), 14–19.
FAO. (2022). The State of Food and Agriculture (SOFA). Investing in Agriculture for a better future. http://www.fao.org/3/i3028e/i3028e.pdf
FAOSTAT. (2022). Crops and livestock products: pepper. FAO United Nations. https://www.fao.org/faostat/en/#data/QCL
Garg, G. C. (2020). Ford Foundation–India Relations in the 1950s: A Recipient Country Perspective. South Asia: Journal of South Asia Studies, 43(6), 1041–1057. https://doi.org/10.1080/00856401.2020.1816019
Harini, S. (2020). Identification COVID-19 Cases in Indonesia with The Double Exponential Smoothing Method. Jurnal Matematika “MANTIK,” 6(1), 66–75. https://doi.org/10.15642/mantik.2020.6.1.66-75
Kaytez, F. (2020). A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 197, 117200. https://doi.org/10.1016/j.energy.2020.117200
Kusmaria, K., Zukryandry, Z., Fitri, A., Anggraini, D., & Budiarti, L. (2022). Bimtek Pengolahan, Pengemasan dan Pemasaran Biji Kakao di Desa Padang Cermin Kabupaten Pesawaran Provinsi Lampung. Jurnal Pengabdian Mandiri, 1(6), 993–998.
Malacalza, B. (2022). Private foundations and the politics of international development. In The politics of south-south cooperation (pp. 461–476). Edward Elgar Publishing. https://doi.org/10.4337/9781839101915.00040
Masood, M., Raza, I., & Abid, S. (2018). Forecasting wheat production using time series models in pakistan. Asian Journal of Agriculture and Rural Development, 8(2), 172–177. https://doi.org/10.18488/JOURNAL.1005/2018.8.2/1005.2.172.177
Mathias Agri, E., Angela Iyaji, A., Nanwul Diyemang, F., & Jecinta Chioma, O. (2020). Impact of Government Expenditure on Agricultural Value Chain in Nigeria. Sumerianz Journal of Business Management and Marketing, 4(312), 192–204. https://doi.org/10.47752/sjbmm.312.192.204
Mills, T. C. (2019). Applied Time Series Analysis - A Practical Guide to Modeling and Forecasting, United Kingdom. In Notitia (Vol. 5, Issue 1). Academic press. https://doi.org/10.32676/n.5.1.1
Minitab 19 Statistical Software. (2019). Computer software. State College, PA: Minitab, Inc. (www.minitab.com).
Nava, N., Di Matteo, T., & Aste, T. (2018). Financial time series forecasting using empirical mode decomposition and support vector regression. Risks, 6(1), 7. https://doi.org/10.3390/risks6010007
Navarro, M. M., & Navarro, B. B. (2019). Optimal short-term forecasting using ga-based holt-winters method. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 681–685.
Nugroho Arif Sudibyo, Ardymulya Iswardani, Arif Wicaksono Septyanto, & Tyan Ganang Wicaksono. (2020). Prediksi Inflasi Di Indonesia Menggunakan Metode Moving Average, Single Exponential Smoothing Dan Double Exponential Smoothing. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 1(2), 123–129. https://doi.org/10.46306/lb.v1i2.25
Oktaviandi, D. (2017). Perubahan Sistem Pasar Lada Putih di Kepulauan Bangka Belitung. JEM Jurnal Ekonomi Dan Manajemen, 3(1), 61–74.
Pitono, J. (2018). Prospek Fertigasi untuk Pengelolaan Hara pada Budidaya Lada. Perspektif, 17(2), 117–128.
Prasmatiwi, F. E., & Evizal, R. (2020). Keragaan dan Produktivitas Perkebunan Lada Tumpangsari Kopi di Lampung Utara. Jurnal Agrotropika, 19(2), 110. https://doi.org/10.23960/ja.v19i2.4579
Ravindran, P. N., & Kallupurackal, J. A. (2012). Black pepper. In Handbook of Herbs and Spices: Second Edition (Vol. 1, pp. 86–115). Elsevier. https://doi.org/10.1533/9780857095671.86
Ruslan, K. (2021). Produktivitas Tanaman Pangan dan Hortikultura. Makalah Kebijakan No. 37, July, 0–48. https://www.researchgate.net/publication/352928793_Produktivitas_Tanaman_Pangan_dan_Hortikultura
Santoso, A. B., Rumetna, M. S., & Isnaningtyas, K. (2021). Penerapan Metode Single Exponential Smoothing Untuk Analisa Peramalan Penjualan. Jurnal Media Informatika Budidarma, 5(2), 756. https://doi.org/10.30865/mib.v5i2.2951
Sari, R. F. M., Prasmatiwi, F. E., & Abidin, Z. (2022). Analisis Finansial Pengembangan Usahatani Lada Di Kecamatan Abung Tengah Kabupaten Lampung Utara. Jurnal Ilmu-Ilmu Agribisnis, 10(1), 1. https://doi.org/10.23960/jiia.v10i1.5643
Siswanto, S., Ardana, I. K., & Karmawati, E. (2021). Peluang Peningkatan Produktivitas dan Daya Saing Lada. Perspektif, 19(2), 149. https://doi.org/10.21082/psp.v19n2.2020.149-160
Takooree, H., Aumeeruddy, M. Z., Rengasamy, K. R. R., Venugopala, K. N., Jeewon, R., Zengin, G., & Mahomoodally, M. F. (2019). A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Critical Reviews in Food Science and Nutrition, 59(sup1), S210–S243.
Talwar, A., & Goyal, C. K. (2019). A comparative study of various exponential smoothing models for forecasting coriander price in Indian commodity market. UNNAYAN : International Bulletin of Management and Economics, X, 143–155.
The Global Economy. (2022). Political stability - Country Rankings. TheGlobalEconomy.Com. http://www.theglobaleconomy.com/rankings/wb_political_stability/#USA
Trull, O., García-Díaz, J. C., & Troncoso, A. (2020). Initialization methods for multiple seasonal holt-winters forecasting models. Mathematics, 8(2), 268. https://doi.org/10.3390/math8020268
Tullah, K. H., Suomo, B., & Ikhsanto, M. N. (2018). Sistem Pakar Untuk Diagnosa Penyakit Tanaman Lada. International Research on Big-Data and Computer Technology: I-Robot, 2(1), 186. https://doi.org/10.53514/ir.v2i1.174
UNCTAD. (2016). Development and Globalization. Facts and Figures. https://stats.unctad.org/Dgff2016/people/goal2/target_2_a.html
Voora, V., Bermúdez, S., & Larrea, C. (2019). Global market report: cocoa. International Institute for Sustainable Development Manitoba: Canada.
Yanti, Y., Syamsuddin, T., & Saparuddin, S. (2018). Analisis Keputusan Petani dalam Pengelolaan Hama pada Tanaman Lada (Pipper nigrum L). Saintifik, 4(2), 99–110. https://doi.org/10.31605/saintifik.v4i2.175
Zhang, K., Gençay, R., & Ege Yazgan, M. (2017). Application of wavelet decomposition in time-series forecasting. Economics Letters, 158, 41–46. https://doi.org/10.1016/j.econlet.2017.06.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Muhammad Ibnu
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Jurnal Agro Industri Perkebunan agree to the following terms:
Authors retain copyright and grant the Jurnal Agro Industri Perkebunan right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material for any purpose, even commercially) with an acknowledgment of the work's authorship and initial publication in Jurnal Agro Industri Perkebunan.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Jurnal Agro Industri Perkebunan. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.