Perubahan Produksi dan Perdagangan Negara-negara Produsen Lada Terbesar di Dunia dan Implikasinya bagi Indonesia

Authors

  • Muhammad Ibnu Lampung University

DOI:

https://doi.org/10.25181/jaip.v11i1.2627

Keywords:

agribusiness, macro indicators, pepper, production, trade

Abstract

The production and trade of agricultural products in global markets will undergo changes due to shifts in demand and production patterns. Although demand for pepper is likely to remain strong, pepper production is prone to fluctuations due to various factors, particularly natural ones. This study aims to predict future changes in the production and trade of the world's largest pepper-producing countries and identify macro-level improvements needed to enhance the pepper production and trade system in Indonesia. Using time-series analysis (i.e., double exponential smoothing) with FAOSTAT data from 1961-2020, this study predicts that the competitive landscape among pepper-producing countries is likely to change over the next 15 years. Some producing countries may overtake others in terms of pepper production and trade. Consequently, Indonesia needs to respond to these changes by implementing various sectoral-level improvements, such as investing in sustainable development, improving infrastructure, and addressing political factors, in addition to improving farmer-level practices.

Downloads

Download data is not yet available.

References

Airlangga, G., Rachmat, A., & Lapihu, D. (2019). Comparison of exponential smoothing and neural network method to forecast rice production in Indonesia. Telkomnika (Telecommunication Computing Electronics and Control), 17(3), 1367–1375. https://doi.org/10.12928/TELKOMNIKA.V17I3.11768

Akbar, S. (2020). Piper nigrum L.(Piperaceae). In Handbook of 200 Medicinal Plants (pp. 1437–1442). Springer.

Alhindawi, R., Nahleh, Y. A., Kumar, A., & Shiwakoti, N. (2020). Projection of greenhouse gas emissions for the road transport sector based on multivariate regression and the double exponential smoothing model. Sustainability (Switzerland), 12(21), 1–18. https://doi.org/10.3390/su12219152

Anggraini, N., Evizal, R., & Septiana, L. M. (2021). Karakteristik Pertumbuhan Melada dan Lada Sambung. Jurnal Agrotropika, 20(2), 129. https://doi.org/10.23960/ja.v20i2.5322

ArunKumar, K. E., Kalaga, D. V., Sai Kumar, C. M., Chilkoor, G., Kawaji, M., & Brenza, T. M. (2021). Forecasting the dynamics of cumulative COVID-19 cases (confirmed, recovered and deaths) for top-16 countries using statistical machine learning models: Auto-Regressive Integrated Moving Average (ARIMA) and Seasonal Auto-Regressive Integrated Moving Averag. Applied Soft Computing, 103, 107161. https://doi.org/10.1016/j.asoc.2021.107161

Asongu, S., Akpan, U. S., & Isihak, S. R. (2018). Determinants of foreign direct investment in fast-growing economies: evidence from the BRICS and MINT countries. Financial Innovation, 4(1), 1–17. https://doi.org/10.1186/s40854-018-0114-0

Aziza, J. N. A. (2022). Perbandingan Metode Moving Average, Single Exponential Smoothing, dan Double Exponential Smoothing Pada Peramalan Permintaan Tabung Gas LPG PT Petrogas Prima Services. Jurnal Teknologi Dan Manajemen Industri Terapan, 1(I), 35–41. https://doi.org/10.55826/tmit.v1ii.8

Basuki, A. T., Purwaningsih, Y., Mulyanto, & Susilo, A. M. (2019). The role of local government expenditure on economic growth: A review of panel data in Indonesia. Humanities and Social Sciences Reviews, 7(5), 1293–1303. https://doi.org/10.18510/hssr.2019.75168

Bathla, S., & Aggarwal, R. (2022). Targeting Public Investment in Agriculture for Higher Private Investment in Eastern India. Agricultural Research, 11(2), 330–339. https://doi.org/10.1007/s40003-021-00564-w

Bhasin, N., & Garg, S. (2020). Impact of Institutional Environment on Inward FDI: A Case of Select Emerging Market Economies. Global Business Review, 21(5), 1279–1301. https://doi.org/10.1177/0972150919856989

Bruce, K., & Costa, H. (2019). Enabling environment for PPPs in agricultural extension projects: Policy imperatives for impact. Journal of Rural Studies, 70, 87–95. https://doi.org/10.1016/j.jrurstud.2019.07.005

Dhamodharavadhani, S., & Rathipriya, R. (2019). Region-Wise Rainfall Prediction Using MapReduce-Based Exponential Smoothing Techniques. In Advances in Intelligent Systems and Computing (Vol. 750, pp. 229–239). Springer. https://doi.org/10.1007/978-981-13-1882-5_21

Direktorat Jenderal Perkebunan. (2020). Statistik Perkebunan Unggulan Nasional 2019-2021. https://drive.google.com/file/d/1ZpXeZogAQYfClNBOgVLhYi8X_vujJdHx/view?usp=sharing

Erbaugh, J., Bierbaum, R., Castilleja, G., da Fonseca, G. A. B., & Hansen, S. C. B. (2019). Toward sustainable agriculture in the tropics. World Development, 121, 158–162. https://doi.org/10.1016/j.worlddev.2019.05.002

Evizal, R. (2000). Pola budidaya lada sistem panjatan hidup di Propinsi Lampung. Jurnal Agrotropika, 5(2), 14–19.

FAO. (2022). The State of Food and Agriculture (SOFA). Investing in Agriculture for a better future. http://www.fao.org/3/i3028e/i3028e.pdf

FAOSTAT. (2022). Crops and livestock products: pepper. FAO United Nations. https://www.fao.org/faostat/en/#data/QCL

Garg, G. C. (2020). Ford Foundation–India Relations in the 1950s: A Recipient Country Perspective. South Asia: Journal of South Asia Studies, 43(6), 1041–1057. https://doi.org/10.1080/00856401.2020.1816019

Harini, S. (2020). Identification COVID-19 Cases in Indonesia with The Double Exponential Smoothing Method. Jurnal Matematika “MANTIK,” 6(1), 66–75. https://doi.org/10.15642/mantik.2020.6.1.66-75

Kaytez, F. (2020). A hybrid approach based on autoregressive integrated moving average and least-square support vector machine for long-term forecasting of net electricity consumption. Energy, 197, 117200. https://doi.org/10.1016/j.energy.2020.117200

Kusmaria, K., Zukryandry, Z., Fitri, A., Anggraini, D., & Budiarti, L. (2022). Bimtek Pengolahan, Pengemasan dan Pemasaran Biji Kakao di Desa Padang Cermin Kabupaten Pesawaran Provinsi Lampung. Jurnal Pengabdian Mandiri, 1(6), 993–998.

Malacalza, B. (2022). Private foundations and the politics of international development. In The politics of south-south cooperation (pp. 461–476). Edward Elgar Publishing. https://doi.org/10.4337/9781839101915.00040

Masood, M., Raza, I., & Abid, S. (2018). Forecasting wheat production using time series models in pakistan. Asian Journal of Agriculture and Rural Development, 8(2), 172–177. https://doi.org/10.18488/JOURNAL.1005/2018.8.2/1005.2.172.177

Mathias Agri, E., Angela Iyaji, A., Nanwul Diyemang, F., & Jecinta Chioma, O. (2020). Impact of Government Expenditure on Agricultural Value Chain in Nigeria. Sumerianz Journal of Business Management and Marketing, 4(312), 192–204. https://doi.org/10.47752/sjbmm.312.192.204

Mills, T. C. (2019). Applied Time Series Analysis - A Practical Guide to Modeling and Forecasting, United Kingdom. In Notitia (Vol. 5, Issue 1). Academic press. https://doi.org/10.32676/n.5.1.1

Minitab 19 Statistical Software. (2019). Computer software. State College, PA: Minitab, Inc. (www.minitab.com).

Nava, N., Di Matteo, T., & Aste, T. (2018). Financial time series forecasting using empirical mode decomposition and support vector regression. Risks, 6(1), 7. https://doi.org/10.3390/risks6010007

Navarro, M. M., & Navarro, B. B. (2019). Optimal short-term forecasting using ga-based holt-winters method. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 681–685.

Nugroho Arif Sudibyo, Ardymulya Iswardani, Arif Wicaksono Septyanto, & Tyan Ganang Wicaksono. (2020). Prediksi Inflasi Di Indonesia Menggunakan Metode Moving Average, Single Exponential Smoothing Dan Double Exponential Smoothing. Jurnal Lebesgue : Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 1(2), 123–129. https://doi.org/10.46306/lb.v1i2.25

Oktaviandi, D. (2017). Perubahan Sistem Pasar Lada Putih di Kepulauan Bangka Belitung. JEM Jurnal Ekonomi Dan Manajemen, 3(1), 61–74.

Pitono, J. (2018). Prospek Fertigasi untuk Pengelolaan Hara pada Budidaya Lada. Perspektif, 17(2), 117–128.

Prasmatiwi, F. E., & Evizal, R. (2020). Keragaan dan Produktivitas Perkebunan Lada Tumpangsari Kopi di Lampung Utara. Jurnal Agrotropika, 19(2), 110. https://doi.org/10.23960/ja.v19i2.4579

Ravindran, P. N., & Kallupurackal, J. A. (2012). Black pepper. In Handbook of Herbs and Spices: Second Edition (Vol. 1, pp. 86–115). Elsevier. https://doi.org/10.1533/9780857095671.86

Ruslan, K. (2021). Produktivitas Tanaman Pangan dan Hortikultura. Makalah Kebijakan No. 37, July, 0–48. https://www.researchgate.net/publication/352928793_Produktivitas_Tanaman_Pangan_dan_Hortikultura

Santoso, A. B., Rumetna, M. S., & Isnaningtyas, K. (2021). Penerapan Metode Single Exponential Smoothing Untuk Analisa Peramalan Penjualan. Jurnal Media Informatika Budidarma, 5(2), 756. https://doi.org/10.30865/mib.v5i2.2951

Sari, R. F. M., Prasmatiwi, F. E., & Abidin, Z. (2022). Analisis Finansial Pengembangan Usahatani Lada Di Kecamatan Abung Tengah Kabupaten Lampung Utara. Jurnal Ilmu-Ilmu Agribisnis, 10(1), 1. https://doi.org/10.23960/jiia.v10i1.5643

Siswanto, S., Ardana, I. K., & Karmawati, E. (2021). Peluang Peningkatan Produktivitas dan Daya Saing Lada. Perspektif, 19(2), 149. https://doi.org/10.21082/psp.v19n2.2020.149-160

Takooree, H., Aumeeruddy, M. Z., Rengasamy, K. R. R., Venugopala, K. N., Jeewon, R., Zengin, G., & Mahomoodally, M. F. (2019). A systematic review on black pepper (Piper nigrum L.): from folk uses to pharmacological applications. Critical Reviews in Food Science and Nutrition, 59(sup1), S210–S243.

Talwar, A., & Goyal, C. K. (2019). A comparative study of various exponential smoothing models for forecasting coriander price in Indian commodity market. UNNAYAN : International Bulletin of Management and Economics, X, 143–155.

The Global Economy. (2022). Political stability - Country Rankings. TheGlobalEconomy.Com. http://www.theglobaleconomy.com/rankings/wb_political_stability/#USA

Trull, O., García-Díaz, J. C., & Troncoso, A. (2020). Initialization methods for multiple seasonal holt-winters forecasting models. Mathematics, 8(2), 268. https://doi.org/10.3390/math8020268

Tullah, K. H., Suomo, B., & Ikhsanto, M. N. (2018). Sistem Pakar Untuk Diagnosa Penyakit Tanaman Lada. International Research on Big-Data and Computer Technology: I-Robot, 2(1), 186. https://doi.org/10.53514/ir.v2i1.174

UNCTAD. (2016). Development and Globalization. Facts and Figures. https://stats.unctad.org/Dgff2016/people/goal2/target_2_a.html

Voora, V., Bermúdez, S., & Larrea, C. (2019). Global market report: cocoa. International Institute for Sustainable Development Manitoba: Canada.

Yanti, Y., Syamsuddin, T., & Saparuddin, S. (2018). Analisis Keputusan Petani dalam Pengelolaan Hama pada Tanaman Lada (Pipper nigrum L). Saintifik, 4(2), 99–110. https://doi.org/10.31605/saintifik.v4i2.175

Zhang, K., Gençay, R., & Ege Yazgan, M. (2017). Application of wavelet decomposition in time-series forecasting. Economics Letters, 158, 41–46. https://doi.org/10.1016/j.econlet.2017.06.010

Published

2023-03-15

How to Cite

Ibnu, M. (2023). Perubahan Produksi dan Perdagangan Negara-negara Produsen Lada Terbesar di Dunia dan Implikasinya bagi Indonesia. Jurnal Agro Industri Perkebunan, 11(1), 27-42. https://doi.org/10.25181/jaip.v11i1.2627

Issue

Section

Article