Effect of Plasma Light on Increasing the Germination Rate of Shallot (Allium ascalonicum L.) Seed Origin TSS Sanren F1 Variety

Authors

  • Mukhammad Akmal Surur Universitas Diponegoro
  • Erma Prihastanti Progam Studi Biologi Universitas Diponegoro
  • Sri Widodo Agung Suedy Progam Studi Biologi Universitas Diponegoro
  • Endah Dwi Hastuti Progam Studi Biologi Universitas Diponegoro
  • Sri Darmanti Progam Studi Biologi Universitas Diponegoro

DOI:

https://doi.org/10.25181/jppt.v24i3.3353

Abstract

ABSTRACT  Sanren F1 shallot is a type of TSS variety that is widely cultivated by Indonesian onion farmers. The cultivation of Sanren F1 shallots is faced with the constraints of non-uniform germination and low seed viability, thus affecting seed quality and yield of TSS shallots. Plasma light radiation is one of the fast, economical and pollution-free plant breeding methods to improve seed performance and yield. This study aims to determine the effect of plasma light period on the germination rate of shallots from TSS seeds of Sanren F1 variety. The research design used was a single-factor Completely Randomized Design (RAL). The factor used is the irradiation period with 6 levels, namely: P0 (control), P1 (5 minutes radiation), P2 (10 minutes radiation), P3 (15 minutes radiation), P4 (20 minutes radiation), and P5 (25 minutes radiation).  The variables observed were germination power, germination rate, seed vigor and sprout height. The data obtained were analyzed using Analiysis of Variance (ANOVA) at 95% confidence level for the formation of the results significantly influenced or not. If influential then continued with Duncan's Multiple Range Test (DMRT). The results showed that plasma light treatment at the irradiation level of 15 minutes (P3) gave a real effect on the growth parameters, namely germination height and was able to increase the germination and seed vigor to 100%. Keywords: Shallot, Germination, Plasma radiation, TSS

Downloads

Download data is not yet available.

References

Adhikari, B. et al. (2020) ‘Free Radical Biology and Medicine Cold plasma seed priming modulates growth , redox homeostasis and stress response by inducing reactive species in tomato ( Solanum lycopersicum )’, Free Radical Biology and Medicine, 156(May), pp. 57–69. doi:10.1016/j.freeradbiomed.2020.06.003.

Ariyanti, A., Prihastanti, E. and Azam, M. (2019) ‘Radiasi Plasma Pijar Korona Terhadap Pertumbuhan Dan Kandungan Nitrogen Total Bawang Merah Dan Bawang Bombay’, BIOLINK (Jurnal Biologi Lingkungan Industri Kesehatan), 6(2), pp. 126–137. doi:10.31289/biolink.v6i2.2693.

Bafoil, M. et al. (2018) ‘Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth’, pp. 1–16.

Bormashenko, E. et al. (2015) ‘Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris)’, Journal of Experimental Botany, 66(13), pp. 4013–4021. doi:10.1093/jxb/erv206.

Cecilia, M. et al. (2018) ‘E ff ects of non – thermal plasmas on seed-borne Diaporthe / Phomopsis complex and germination parameters of soybean seeds’, Innovative Food Science and Emerging Technologies, 49(April), pp. 82–91. doi:10.1016/j.ifset.2018.07.009.

Dhayal, M., Lee, S. and Park, S. (2006) ‘Using low-pressure plasma for Carthamus tinctorium L . seed surface modification’, Biological Research Center of Industrial Accelerators, 80, pp. 499–506. doi:10.1016/j.vacuum.2005.06.008.

Ewindo (2023) PT East West Seed Indonesia. Available at: https://www.panahmerah.id/id/product-detail/sanren.

Firmansyah et al. (2021) ‘The Effect Of Organic Fertilizer, Biochar, And Hormones On Bulb Splitting In The Cultivation Of True Seed Shallot IOP Conf. Series: Earth and Environmental Science 653’. doi:10.1088/1755-1315/653/1/012069.

Gao, X. et al. (2019) ‘Effect of Dielectric Barrier Discharge Cold Plasma on Pea Seed Growth’, Journal of Agricultural and Food Chemistry, 67(39), pp. 10813–10822. doi:10.1021/acs.jafc.9b03099.

Hasanah, Y., Sipayung, R. and Tarigan, B. (2022) ‘Produksi Bawang Merah asal TSS Varietas Sanren F1 dengan Pemberian Pupuk ZA dan Paklobutrazol’, Digitalisasi Pertanian Menuju Kebangkitan Ekonomi Kreatif, 6(1), pp. 305–311.

Henselová, M. et al. (2012) ‘Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma’, Biologia, 67, pp. 490–497. Available at: https://doi.org/10.2478/s11756-012-0046-5.

Iranbakhsh, A. et al. (2020) ‘Cold Plasma Up‑Regulated Expressions of WRKY1 Transcription Factor and Genes Involved in Biosynthesis of Cannabinoids in Hemp (Cannabis sativa L.)’, Plasma Chemistry and Plasma Processing, 40, pp. 527–37.

Jiang, J., Li, J. and Dong, Y. (2018) ‘Effect of cold plasma treatment on seedling growth and nutrient absorption of tomato’, pp. 3–7.

Karunanidhi, A. et al. (2019) ‘Bioactive 2-(methyldithio)pyridine-3-carbonitrile from Persian shallot (allium stipitatum regel.) exerts broad-spectrum antimicrobial activity’, Molecules, 24(6). doi:10.3390/molecules24061003.

Koga, K. et al. (2016) ‘Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.)’, Applied Physics Express, 9(1). doi:10.7567/APEX.9.016201.

Lo, C. et al. (2019) ‘Scientia Horticulturae Cold plasma pretreatment improves the germination of wild asparagus ( Asparagus acutifolius L .) seeds’, Scientia Horticulturae, 256(May), p. 108554. doi:10.1016/j.scienta.2019.108554.

Măgureanu, M., Daniela, R.S. and Mihai, D. (2018) ‘Stimulation of the Germination and Early Growth of Tomato Seeds by Non ‑ thermal Plasma’, Plasma Chemistry and Plasma Processing, 38(5), pp. 989–1001. doi:10.1007/s11090-018-9916-0.

Mukaromah, L., Nurhidayati, T. and Nurfadilah, S. (2013) ‘Pengaruh Sumber dan Konsentrasi Nitrogen terhadap Pertumbuhan dan Perkembangan Biji Dendrobium laxiflorum J.J Smith secara In Vitro’, Sains dan Seni Pomits, 2(1), pp. 1–4.

Nugroho Setiawan, A., Vistiadi, K. and Sarjiyah, S. (2021) ‘Perbaikan Perkecambahan Dan Pertumbuhan Bawang Merah Dengan Perendaman Benih Dalam Giberelin’, Jurnal Penelitian Pertanian Terapan, 21(1), pp. 40–50. doi:10.25181/jppt.v21i1.1965.

Nur, M. et al. (2007) ‘Kajian Fisis Radiasi Plasma Terhadap Organ Daun Pada Pertumbuhan Awal Tanaman Anggrek Phalaenopsis Amabilis’, Jurnal Berkala Fisika, 10(1), pp. 53–59.

Prabhandaru, I. and Saputro, B. (2017) ‘Prabhandaru & Saputro 2017_Respon perkecambahan benih padi varietas lokal sigadis hasil iradiasi sinar gamma’, Sains dan seni, 6(2).

Priatama, R.A. et al. (2022) ‘Current Advancements in the Molecular Mechanism of Plasma Treatment for Seed Germination and Plant Growth’, International Journal of Molecular Sciences, 23(9). doi:10.3390/ijms23094609.

Rahayu, heni S., Muchtar, M. and Saidah, S. (2019) ‘The feasibility and farmer perception of true shallot seed technology in Sigi District, Central Sulawesi, Indonesia’, Asian Journal of Agriculture, 3(01), pp. 16–21. doi:10.13057/asianjagric/g03103.

Rajiman and Megawati, S. (2022) ‘Viabilitas Dan Vigor Berbagai Varietas True Shallot Seed Dengan Perendaman Jenis Zat Pengatur Tumbuh (Zpt) Alami’, AGRITECH, XXIV(2).

Sadat, F. et al. (2020) ‘Seed Priming with Cold Plasma and Multi ‑ walled Carbon Nanotubes Modified Growth , Tissue Differentiation , Anatomy , and Yield in Bitter Melon ( Momordica charantia )’, Journal of Plant Growth Regulation, 39(1), pp. 87–98. doi:10.1007/s00344-019-09965-2.

Shelar, A. et al. (2022) ‘RSC Advances Emerging cold plasma treatment and machine learning prospects for seed priming : a step towards sustainable food production’, RSC Advances, 12, pp. 10467–10488. doi:10.1039/D2RA00809B.

Stolárik, T. et al. (2015) ‘Effect of Low-Temperature Plasma on the Structure of Seeds, Growth and Metabolism of Endogenous Phytohormones in Pea (Pisum sativum L.)’, Plasma Chemistry and Plasma Processing, 35(4), pp. 659–676. doi:10.1007/s11090-015-9627-8.

Sulistyaningsih, E., Pangestuti, R. and Rosliani, R. (2020) ‘Ilmu Pertanian ( Agricultural Science ) Growth and yield of five prospective shallot selected accessions’, Ilmu Pertanian, 5(2), pp. 92–97.

Tamošiūnė, I. et al. (2020) ‘Cold Plasma Treatment of Sunflower Seeds Modulates Plant-Associated Microbiome and Stimulates Root and Lateral Organ Growth’, Frontiers in Plant Science, 11, pp. 1–13. doi:10.3389/fpls.2020.568924.

Thesima, Y. et al. (2013) ‘Identification and Biological Activity of Antifungal Saponins from Shallot (Allium cepa L. Aggregatum Group)’, Agricultural and Food Chemistry, 61(31), pp. 7440–7445.

Tong, J. et al. (2014) ‘Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of andrographis paniculata’, Plasma Science and Technology, 16(3), pp. 260–266. doi:10.1088/1009-0630/16/3/16.

Wang, X. et al. (2017) ‘Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma’, (May), pp. 1–9. doi:10.1038/s41598-017-04963-4.

Widiarti, W., Wijaya, I. and Umarie, I. (2017) ‘Optimalisasi teknologi Produksi True Shallot Seed (Biji Biologi) Bawang Merah (Allium ascolonicum L)’, Agritrop, 15(2), pp. 203–216.

Zhou, R. et al. (2016) ‘Effects of Atmospheric-Pressure N2, He, Air, and O2 Microplasmas on Mung Bean Seed Germination and Seedling Growth’, Scientific Reports, pp. 1–11. Available at: https://doi.org/10.1038/srep32603.

Downloads

Published

2024-10-25

How to Cite

Surur, M. A. ., Prihastanti, E. ., Suedy, S. W. A., Hastuti, E. D. ., & Darmanti, S. . (2024). Effect of Plasma Light on Increasing the Germination Rate of Shallot (Allium ascalonicum L.) Seed Origin TSS Sanren F1 Variety. Jurnal Penelitian Pertanian Terapan, 24(3), 346-354. https://doi.org/10.25181/jppt.v24i3.3353

Issue

Section

Artikel