Application Development of Expert System for Early Detection of Pests and Diseases of Corn Plants

Authors

  • Mohamad Lihawa Jurusan Agroteknologi Fakultas Pertanian Universitas Negeri Gorontalo
  • Zulzain Ilahude Universitas Negeri Gorontalo
  • Mukhlisulfatih Latief Jurusan Tekhnik Elektro Fakultas Tekhnik Universitas Negeri Gorontalo
  • Mohamad Ikbal Bahua Jurusan Agroteknologi Fakultas Pertanian Universitas Negeri Gorontalo
  • Hayatiningsih Gubali Jurusan Agroteknologi Fakultas Pertanian Universitas Negeri Gorontalo
  • Nikmah Musa Jurusan Agroteknologi Fakultas Pertanian Universitas Negeri Gorontalo
  • Salmawaty Tansa Jurusan Agroteknologi Fakultas Pertanian Universitas Negeri Gorontalo

DOI:

https://doi.org/10.25181/jppt.v24i1.3039

Abstract

Pests and diseases of maize plants have the potential to cause crop failure. Lack of information and knowledge about plant pests and diseases and limited field extension workers lead to errors in diagnosing maize pests and diseases. This results in inappropriate crop management that decreases production. Therefore, farmers need a tool to detect pest and disease attacks through physical symptoms seen on plants in the field. This research aims to produce an Agricultural Information System, namely an android-based expert system to detect pests and diseases in corn plants. The method used is software with prototyping to get an overview of the application to be built through a prototype application design and then evaluated by the user. The research stages include; gathering needs, building prototypes, evaluating protoype, coding the system, testing the system, evaluating the system, and using the system.  The result is the symptoms of pest and disease attacks on corn plants in the field, can be detected through the form of symptoms that are matched with images and characteristics of symptoms displayed on the Agricultural Information System software installed on android-based mobile phones or Tablets. Test results from 28 respondents showed that the success rate of detection of pest symptoms on corn plants was 75%, and for disease symptoms was 90%.   

Downloads

Download data is not yet available.

References

Abbasi, R., Martinez, P., & Ahmad, R. 2022. The digitization of agricultural industry – a systematic literature review on agriculture 4.0. Smart Agricultural Technology, 2, 1–24. https://doi.org/10.1016/j.atech.2022.100042

Alves, L. M., Souza, G., Ribeiro, P., & Machado, R. J. 2021. Longevity of risks in software development projects: A comparative analysis with an academic environment. Procedia Computer Science, 181(2019), 827–834. https://doi.org/10.1016/j.procs.2021.01.236

Chen, Y., Yang, W., Li, M., Hao, Z., Zhou, P., & Sun, H. 2018. Research on pest image processing method based on android thermal infrared lens. IFAC-PapersOnLine, 51(17), 173–178. https://doi.org/10.1016/j.ifacol.2018.08.083

Choma, J., Guerra, E. M., da Silva, T. S., & Zaina, L. M. 2022. An approach to explore sequential interactions in cognitive activities of software engineering. Information and Software Technology, 141, 106730. https://doi.org/10.1016/J.INFSOF.2021.106730

Deepika, P., & Arthi, B. 2022. Prediction of plant pest detection using improved mask FRCNN in cloud environment. Measurement: Sensors, 24, 1–7. https://doi.org/10.1016/j.measen.2022.100549

Dhanya, V. G., Subeesh, A., Kushwaha, N. L., Vishwakarma, D. K., Kumar, T. N., Ritika, G., & Singh, A. N. 2022. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture, 6, 211–229. https://doi.org/10.1016/j.aiia.2022.09.007

Divyanth, L. G., Ahmad, A., & Saraswat, D. 2023. A two-stage deep-learning based segmentation model for crop disease quantification based on corn field imagery. Smart Agricultural Technology, 3, 1–12. https://doi.org/10.1016/j.atech.2022.100108

Furuya, D. E. G., Ma, L., Pinheiro, M. M. F., Gomes, F. D. G., Gonçalvez, W. N., Junior, J. M., Rodrigues, D. de C., Blassioli-Moraes, M. C., Michereff, M. F. F., Borges, M., Alaumann, R. A., Ferreira, E. J., Osco, L. P., Ramos, A. P. M., Li, J., & Jorge, L. A. de C. 2021. Prediction of insect-herbivory-damage and insect-type attack in maize plants using hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 105, 1–10. https://doi.org/10.1016/j.jag.2021.102608

Geogy, M., & Dharani, A. 2016. A scrutiny of the Software Requirement Engineering process. Procedia Technology, 25, 405–410. https://doi.org/10.1016/j.protcy.2016.08.125

Guégan, J. F., de Thoisy, B., Gomez-Gallego, M., & Jactel, H. 2023. World forests, global change, and emerging pests and pathogens. Current Opinion in Environmental Sustainability, 61, 101266. https://doi.org/10.1016/j.cosust.2023.101266

Herlinda, S., Suharjo, R., Elbi Sinaga, M., Fawwazi, F., & Suwandi, S. 2022. First report of occurrence of corn and rice strains of fall armyworm, Spodoptera frugiperda in South Sumatra, Indonesia and its damage in maize. Journal of the Saudi Society of Agricultural Sciences, 21(6), 412–419. https://doi.org/10.1016/j.jssas.2021.11.003

Jha, K., Doshi, A., Patel, P., & Shah, M. 2019. A comprehensive review on automation in agriculture using artificial intelligence. Artificial Intelligence in Agriculture, 2, 1–12. https://doi.org/10.1016/j.aiia.2019.05.004

Karar, M. E., Alsunaydi, F., Albusaymi, S., & Alotaibi, S. 2021. A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423–4432. https://doi.org/10.1016/j.aej.2021.03.009

Karmakar, S., Das, P., Panda, D., Xie, K., Baig, M. J., & Molla, K. A. 2022. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. Plant Science, 323, 1–24. https://doi.org/10.1016/j.plantsci.2022.111376

Kristiaga, Z. C. J., Sutoyo, & Agastya, I. M. I. 2020. Kelimpahan serangga musuh alami dan serangga hama pada ekosistem tanaman cabai merah (Capsicum Annum L.) pada fase vegetatif di Kecamatan Dau Kabupaten Malang. Jurnal Penelitian Pertanian Terapan, 20(3), 230–236.

Kumi, S., Kelly, D., Woodstuff, J., Lomotey, R. K., Orji, R., & Deters, R. 2022. Cocoa Companion: Deep Learning-Based Smartphone Application for Cocoa Disease Detection. Procedia Computer Science, 203, 87–94. https://doi.org/10.1016/j.procs.2022.07.013

Muzaffar, A., Hassen, H. R., Lones, M. A., & Zantout, H. 2022. An in-depth review of machine learning based Android malware detection. Computers and Security, 121, 102833. https://doi.org/10.1016/j.cose.2022.102833

Nayak, A., Chakraborty, S., & Swain, D. K. 2023. Application of smartphone-image processing and transfer learning for rice disease and nutrient deficiency detection. Smart Agricultural Technology, 4, 1–12. https://doi.org/10.1016/j.atech.2023.100195

Patel, R., Mitra, B., Vinchurkar, M., Adami, A., Patkar, R., Giacomozzi, F., Lorenzelli, L., & Baghini, M. S. 2022. A review of recent advances in plant-pathogen detection systems. Heliyon, 8, 1–12. https://doi.org/10.1016/j.heliyon.2022.e11855

Subeesh, A., & Mehta, C. R. 2021. Automation and digitization of agriculture using artificial intelligence and internet of things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004

Zhan, B., Yang, X., Lommel, S. A., & Zhou, X. 2022. Recent progress in maize lethal necrosis disease: From pathogens to integrated pest management. Journal of Integrative Agriculture, 21(12), 3445–3455. https://doi.org/10.1016/j.jia.2022.08.050

Downloads

Published

2024-03-31

How to Cite

Lihawa, M. ., Ilahude, Z., Latief , M., Ikbal Bahua, M. ., Gubali, H. ., Musa, N. ., & Tansa, S. . (2024). Application Development of Expert System for Early Detection of Pests and Diseases of Corn Plants. Jurnal Penelitian Pertanian Terapan, 24(1), 58-66. https://doi.org/10.25181/jppt.v24i1.3039

Issue

Section

Artikel