Efficacy Test Of Beauveria Bassiana For Control Of Plutella Xylostella On Kale (Brassica Oleracea) Var. Sabellica

Authors

  • Sutarman Sutarman Universitas Muhammadiyah Sidoarjo
  • Aisyah Dirra Assholikhah Universitas Muhammadiyah Sidoarjo
  • Andriani Eko Prihatiningrum Universitas Muhammadiyah Sidoarjo

DOI:

https://doi.org/10.25181/jppt.v23i4.3012

Abstract

This study aimed to determine the effectiveness of Beauveria bassiana in controlling Plutella xylostella pests. The first stage of the experiment was conducted in vitro at the Pest and Disease Laboratory of UMSIDA by testing the ability of B. bassiana at spore densities of 100, 103, 105, and 107 CFU.mL-1 in inactivating P. xylostella caterpillars. The field application test was carried out on land endemic to leaf caterpillar pests in Seloliman Village,  Mojokerto, East Java Province, Indonesia. The experiment was arranged in a Randomized Block Design with four B. bassiana spore density treatments repeated four times.  Observations were made on the intensity of attack as well as wet weight and dry weight of plants. Data analysis used ANOVA followed by Duncan's test at the 5% test level to determine differences between treatments. The results showed that B. bassiana effectively deactivated the activity up to 60.2% in the application with a spore density of 107. The application of B. bassiana reduced the intensity of P. xylostella pest attack to 63.41% and increased the wet weight and dry weight of kale leaves by 246.0%. and 305.8% compared without B. bassiana application. The application of this entomopathogenic fungus can be a solution for controlling pests on land that is endemic to leaf caterpillar attacks

Downloads

Download data is not yet available.

References

Alali, S. et al. (2019) ‘Thermotolerant isolates of Beauveria bassiana as potential control agent of insect pest in subtropical climates’, PLOS ONE, 14(2), p. e0211457. Available at: https://doi.org/10.1371/journal.pone.0211457.

Amobonye, A. et al. (2021) ‘Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte’, Fungal Biology, 125(1), pp. 39–48. Available at: https://doi.org/https://doi.org/10.1016/j.funbio.2020.10.003.

Aynalem, B. et al. (2021) ‘Molecular phylogeny and pathogenicity of indigenous Beauveria bassiana against the tomato leafminer, Tuta absoluta Meyrick 1917 (Lepidoptera: Gelechiidae), in Ethiopia.’, Journal, genetic engineering & biotechnology, 19(1), p. 127. Available at: https://doi.org/10.1186/s43141-021-00227-x.

Bamisile, B.S. et al. (2019) ‘Endophytic Beauveria bassiana in Foliar-Treated Citrus limon Plants Acting as a Growth Suppressor to Three Successive Generations of Diaphorina citri Kuwayama (Hemiptera: Liviidae).’, Insects, 10(6). Available at: https://doi.org/10.3390/insects10060176.

Boomsma, J.J. et al. (2014) ‘Evolutionary interaction networks of insect pathogenic fungi.’, Annual review of entomology, 59, pp. 467–485. Available at: https://doi.org/10.1146/annurev-ento-011613-162054.

Canassa, F. et al. (2019) ‘Effects of bean seed treatment by the entomopathogenic fungi Metarhizium robertsii and Beauveria bassiana on plant growth, spider mite populations and behavior of predatory mites’, Biological Control, 132, pp. 199–208. Available at: https://doi.org/https://doi.org/10.1016/j.biocontrol.2019.02.003.

Chechi, A. et al. (2019) ‘Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples’, Pesticide Biochemistry and Physiology, 158, pp. 18–24. Available at: https://doi.org/https://doi.org/10.1016/j.pestbp.2019.04.002.

Daniel, J.F. de S. et al. (2019) ‘Susceptibly of Alphitobius diaperinus to Beauveria bassiana extracts’, Natural Product Research, 33(20), pp. 3033–3036. Available at: https://doi.org/https://doi.org/10.1080/14786419.2018.1514396.

Deng, X. et al. (2021) ‘Phenyl imidazolidin-2-ones antagonize a β-adrenergic-like octopamine receptor in diamondback moth (Plutella xylostella).’, Pest management science, 77(7), pp. 3224–3232. Available at: https://doi.org/10.1002/ps.6363.

Dhawan, M. and Joshi, N. (2017) ‘Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN.’, Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology], 48(3), pp. 522–529. Available at: https://doi.org/10.1016/j.bjm.2016.08.004.

Erawati, D.N. et al. (2021) ‘Infection Pathways Beauveria bassiana and Metarhizium anisopliae For Bio-Control of Coleoptera:Oryctes rhinoceros L.’, Jurnal Penelitian Pertanian Terapan, 21(3), pp. 220–226. Available at: https://doi.org/10.25181/jppt.v21i3.2139.

Esparza Mora, M., Castilho, A. and Fraga, M. (2018) ‘Classification and infection mechanism of entomopathogenic fungi’, Arquivos do Instituto Biológico, 84. Available at: https://doi.org/10.1590/1808-1657000552015.

Fiutak, G. and Michalczyk, M. (2020) ‘Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.).’, Food chemistry, 330, p. 127189. Available at: https://doi.org/10.1016/j.foodchem.2020.127189.

Gava, C.A.T. and Pinto, J.M. (2016) ‘Biocontrol of melon wilt caused by Fusarium oxysporum Schlect f. sp. melonis using seed treatment with Trichoderma spp. and liquid compost’, Biological Control, 97, pp. 13–20. Available at: https://doi.org/https://doi.org/10.1016/j.biocontrol.2016.02.010.

Gebremariam, A., Chekol, Y. and Assefa, F. (2021) ‘Phenotypic, molecular, and virulence characterization of entomopathogenic fungi, Beauveria bassiana (Balsam) Vuillemin, and Metarhizium anisopliae (Metschn.) Sorokin from soil samples of Ethiopia for the development of mycoinsecticide’, Heliyon, 7(5), p. e07091. Available at: https://doi.org/https://doi.org/10.1016/j.heliyon.2021.e07091.

Jallow, M.F.A. et al. (2017) ‘Pesticide Knowledge and Safety Practices among Farm Workers in Kuwait: Results of a Survey.’, International journal of environmental research and public health, 14(4). Available at: https://doi.org/10.3390/ijerph14040340.

Khosravi, R. et al. (2015) ‘Virulence of four Beauveria bassiana (Balsamo) (Asc., Hypocreales) isolates on rose sawfly, Arge rosae under laboratory condition’, Journal of King Saud University - Science, 27(1), pp. 49–53. Available at: https://doi.org/https://doi.org/10.1016/j.jksus.2014.04.003.

Kirkland, B.H., Westwood, G.S. and Keyhani, N.O. (2004) ‘Pathogenicity of Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae to Ixodidae Tick Species Dermacentor variabilis, Rhipicephalus sanguineus, and Ixodes scapularis’, Journal of Medical Entomology, 41(4), pp. 705–711. Available at: https://doi.org/10.1603/0022-2585-41.4.705.

Li, Z. et al. (2016) ‘Biology, Ecology, and Management of the Diamondback Moth in China.’, Annual review of entomology, 61, pp. 277–296. Available at: https://doi.org/10.1146/annurev-ento-010715-023622.

Litwin, A., Nowak, M. and Różalska, S. (2020) ‘Entomopathogenic fungi: unconventional applications’, Reviews in Environmental Science and Bio/Technology, 19(1), pp. 23–42. Available at: https://doi.org/10.1007/s11157-020-09525-1.

Liu, F.-H. et al. (2019) ‘Isolation and characterization of Pseudomonas cedrina infecting Plutella xylostella (Lepidoptera: Plutellidae).’, Archives of insect biochemistry and physiology, 102(3), p. e21593. Available at: https://doi.org/10.1002/arch.21593.

Mallott, M. et al. (2019) ‘A flavin-dependent monooxgenase confers resistance to chlorantraniliprole in the diamondback moth, Plutella xylostella.’, Insect biochemistry and molecular biology, 115, p. 103247. Available at: https://doi.org/10.1016/j.ibmb.2019.103247.

Michalak, M. et al. (2020) ‘Possibility of Using Fermented Curly Kale Juice to Manufacture Feta-Type Cheese’, Applied Sciences. Available at: https://doi.org/10.3390/app10114020.

Moloinyane, S. and Nchu, F. (2019) ‘The Effects of Endophytic Beauveria bassiana Inoculation on Infestation Level of Planococcus ficus, Growth and Volatile Constituents of Potted Greenhouse Grapevine (Vitis vinifera L.).’, Toxins, 11(2). Available at: https://doi.org/10.3390/toxins11020072.

Mondal, S. et al. (2016) ‘Journey of enzymes in entomopathogenic fungi’, Pacific Science Review A: Natural Science and Engineering, 18(2), pp. 85–99. Available at: https://doi.org/https://doi.org/10.1016/j.psra.2016.10.001.

Neugart, S. et al. (2018) ‘The intrinsic quality of brassicaceous vegetables: How secondary plant metabolites are affected by genetic, environmental, and agronomic factors’, Scientia Horticulturae, 233, pp. 460–478. Available at: https://doi.org/https://doi.org/10.1016/j.scienta.2017.12.038.

Nishi, O. et al. (2021) ‘Epiphytic and endophytic colonisation of tomato plants by the entomopathogenic fungus Beauveria bassiana strain GHA’, Mycology, 12(1), pp. 39–47. Available at: https://doi.org/10.1080/21501203.2019.1707723.

Polak-Berecka, M. et al. (2021) ‘Potential Biological Activities of Peptides Generated during Casein Proteolysis by Curly Kale (Brassica oleracea L. var. sabellica L.) Leaf Extract: An In Silico Preliminary Study.’, Foods (Basel, Switzerland), 10(11). Available at: https://doi.org/10.3390/foods10112877.

Quesada Moraga, E. (2020) ‘Entomopathogenic fungi as endophytes: their broader contribution to IPM and crop production’, Biocontrol Science and Technology, 30(9), pp. 864–877. Available at: https://doi.org/10.1080/09583157.2020.1771279.

Reddy, G.V.P. et al. (2014) ‘Evaluation of the effectiveness of entomopathogens for the management of wireworms (Coleoptera: Elateridae) on spring wheat’, Journal of Invertebrate Pathology, 120, pp. 43–49. Available at: https://doi.org/https://doi.org/10.1016/j.jip.2014.05.005.

Rondot, Y. and Reineke, A. (2018) ‘Endophytic Beauveria bassiana in grapevine Vitis vinifera (L.) reduces infestation with piercing-sucking insects’, Biological Control, 116, pp. 82–89. Available at: https://doi.org/https://doi.org/10.1016/j.biocontrol.2016.10.006.

Russo, M.L. et al. (2015) ‘Endophytic colonisation of tobacco, corn, wheat and soybeans by the fungal entomopathogen Beauveria bassiana (Ascomycota, Hypocreales)’, Biocontrol Science and Technology, 25(4), pp. 475–480. Available at: https://doi.org/10.1080/09583157.2014.982511.

Sánchez-Rodríguez, A.R. et al. (2018) ‘An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae’, Biological Control, 116, pp. 90–102. Available at: https://doi.org/https://doi.org/10.1016/j.biocontrol.2017.01.012.

Sutarman et al. (2021) ‘In Vitro Evaluation of The Inhibitory Power of Trichoderma harzianum Against Pathogens that Cause Anthracnose in Chili’, Journal of Physics: Conference Series, 1764(1), p. 12026. Available at: https://doi.org/10.1088/1742-6596/1764/1/012026.

Udompaisarn, S. et al. (2020) ‘The polyketide synthase PKS15 has a crucial role in cell wall formation in Beauveria bassiana’, Scientific Reports, 10(1), p. 12630. Available at: https://doi.org/10.1038/s41598-020-69417-w.

Valero-Jiménez, C.A. et al. (2016) ‘Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes’, BMC Genomics, 17(1), p. 986. Available at: https://doi.org/10.1186/s12864-016-3339-1.

Wari, D. et al. (2020) ‘Augmentation and compatibility of Beauveria bassiana with pesticides against different growth stages of Bemisia tabaci (Gennadius); an in vitro and field approach’, Pest Management Science, 76(9), pp. 3236–3252. Available at: https://doi.org/https://doi.org/10.1002/ps.5881.

Xu, J. et al. (2020) ‘ABCC2 participates in the resistance of Plutella xylostella to chemical insecticides’, Pesticide Biochemistry and Physiology, 162, pp. 52–59. Available at: https://doi.org/https://doi.org/10.1016/j.pestbp.2019.08.010.

Yasin, M. et al. (2019) ‘Virulence of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae against red palm weevil, Rhynchophorus ferrugineus (Olivier)’, Entomological Research, 49(1), pp. 3–12. Available at: https://doi.org/https://doi.org/10.1111/1748-5967.12260.

You, J. et al. (2016) ‘Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato’, Biological Control, 101, pp. 31–38. Available at: https://doi.org/https://doi.org/10.1016/j.biocontrol.2016.06.006.

Zhang, J. et al. (2020) ‘Colonization of Beauveria bassiana 08F04 in root-zone soil and its biocontrol of cereal cyst nematode (Heterodera filipjevi)’, PLOS ONE, 15(5), p. e0232770. Available at: https://doi.org/10.1371/journal.pone.0232770.

Zhang, S. et al. (2011) ‘Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, Beauveria bassiana.’, Molecular microbiology, 80(3), pp. 811–826. Available at: https://doi.org/10.1111/j.1365-2958.2011.07613.x.

Zhou, J. et al. (2020) ‘Reduced expression of the P-glycoprotein gene PxABCB1 is linked to resistance to Bacillus thuringiensis Cry1Ac toxin in Plutella xylostella (L.).’, Pest management science, 76(2), pp. 712–720. Available at: https://doi.org/10.1002/ps.5569.

Zhou, S. et al. (2021) ‘Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective’, Energy Economics, 95, p. 105137. Available at: https://doi.org/https://doi.org/10.1016/j.eneco.2021.105137.

Downloads

Published

2023-12-28

How to Cite

Sutarman, S., Assholikhah, A. D. ., & Prihatiningrum, A. E. (2023). Efficacy Test Of Beauveria Bassiana For Control Of Plutella Xylostella On Kale (Brassica Oleracea) Var. Sabellica. Jurnal Penelitian Pertanian Terapan, 23(4), 601-610. https://doi.org/10.25181/jppt.v23i4.3012

Issue

Section

Artikel