Aplications of Vesicular Arbuscular Mycorrhizes (Vam) and Trichoderma Sp

Aplications of Vesicular Arbuscular Mycorrhizes (VAM) and Trichoderma sp With Transplanting Age For of Purple Corn Seeds (Zea Mays Var Ceratina Kulesh).

Authors

  • Bibiana Rini widiati Universitas Muslim Maros
  • Hadija Hadija Program studi Kehutanan, Fakultas Pertanian, Peternakan, dan Kehutanan, Universitas Muslim Maros, Indonesia
  • Muh. Izzdin Idrus Program studi Agroteknologi, Fakultas Pertanian, Peternakan, dan Kehutanan, Universitas Muslim Maros, Indonesia

DOI:

https://doi.org/10.25181/jppt.v23i3.2439

Abstract

Vesicular Arbuscular Mycorrhizae and Trichoderma sp are biological agents of microorganisms to assist in nutrient uptake, suppress pathogen populations, accelerate growth and increase crop yields. This research aimed to determine the effect of age transplanting seeds with the application of Mycorrhizal Arbuscula Vesicular and a dose of Trichoderma sp., which could increase the production of Purple Corn (Zea mays var Ceratina Kulesh). This research was carried out in an experiment using Split Plot Design. The Main Plot was the age of transplanting (m) with the application of Vesicular Arbuscular Mycorrhizae as much as 10 g.tan-1, which were: m1 (transplanting age 0 days), m2 (transplanting age 7 days), m3 (age of transplanting 10 days). The Sub-Plot (SP) was The Trichoderma sp. (t), which were: t0 (without Trichoderma sp.), t1 (Trichoderma sp. 100 g.tan-1), t2 (Trichoderma sp. 200 g.tan-1). Each treatment in the main plot and sub-plot was combined to create nine treatment combinations. Each treatment combination was repeated three times so that a total of 27 plot units. The results showed that the treatment of  10 days of transplanting with the application of Mycorrhizal Vesicular Arbuscula as much as 10 g.tan-1 gave the best results on cob diameter and Phosphorus uptake. Dosage of Trichoderma sp. 200 g.tan-1 gave the best results on planting crown weight, cob diameter, The combination of 10 days of transplanting, while the application of Vesicular Arbuscular Mycorrhizae and a dose of Trichoderma sp. 200 g.tan-1 gave the best results on cob weight per plant, Nitrogen and Potassium uptake.

Downloads

Download data is not yet available.

References

Akladious, S. A., & Abbas, S. M. (2014). Application of Trichoderma Harzianum T22 As a Biofertilizer Potential in Maize Growth. Journal of Plant Nutrition, 37(1), 30–49. https://doi.org/10.1080/01904167.2013.829100

Alfiyan, A., Noor, A. s., & Eko, W. (2014). Pengaruh Umur Transplanting Benih dan Pemberian Berbagai Macam Pupuk nitrogen terhadap Pertumbuhan dan Hasil Tanaman Jagung Manis (Zea mays L. saccharata Sturt.). Jurnal Produksi Tanaman, 2(1), 1–9.

Azarmi, R., Hajieghrari, B., & Giglou, A. (2011). Effect of trichoderma isolates on tomato seedling growth response and nutrient uptake. African Journal of Biotechnology, 10(31), 5850–5855. https://doi.org/10.5897/ajb10.1600

Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., & Zhang, L. (2019). Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation : Implications in Abiotic Stress Tolerance. 10(September), 1–15. https://doi.org/10.3389/fpls.2019.01068

Biswas, M. (2015). Direct Seeded and Transplanted Maize: Effects of Planting Date and Age of Seedling on the Yield and Yield Attributes. American Journal of Experimental Agriculture, 5(5), 489–497. https://doi.org/10.9734/ajea/2015/13594

BPT. (2009). Analisis Kimia Tanah, Tanaman, Air, dan Pupuk (ke 2).

Brundrett Mark. (2004). Diversity and classification of mycorrhizal associations. Biological Reviews of the Cambridge Philosophical Society, 79(3), 473–495. https://doi.org/10.1017/S1464793103006316

Charisma, AM. Yuni Sri Rahayu, I. (2012). Pengaruh Kombinasi Kompos Trichoderma Dan Mikoriza Vesikular Arbuskular (Mva) Terhadap Pertumbuhan Tanaman Kedelai (Glycine Max (L.) Merill) Pada Media Tanam Tanah Kapur. LenteraBio, 1(3), 111–116.

Davison, J., García de León, D., Zobel, M., Moora, M., Bueno, C. G., Barceló, M., Gerz, M., León, D., Meng, Y., Pillar, V. D., Sepp, S. K., Soudzilovaskaia, N. A., Tedersoo, L., Vaessen, S., Vahter, T., Winck, B., & Öpik, M. (2020). Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. New Phytologist, 226(4), 1117–1128. https://doi.org/10.1111/nph.16423

Garcia, K., Zimmermann, S. D., Moléculaire, P., Cnrs, U. M. R., & Supagro, I. (2014). Plant Traffic and Transport The role of mycorrhizal associations in plant potassium nutrition Article type : Received on : Accepted on : Citation : The role of mycorrhizal associations in plant potassium nutrition Kevin Garcia # and Sabine Zimmermann Camp. Frontiers in Plant Science, 5. https://doi.org/10.3389/fpls.2014.00337

Garg, N., & Chandel-mm, S. (2010). Arbuscular mycorrhizal networks : Process and functions . A review Review article Arbuscular mycorrhizal networks : process and functions . A review. Agrononomy. Sustainable. Development., 30(September), 581–599. https://doi.org/10.1051/agro/2009054

Gavrić, T., & Omerbegović, O. (2021). Effect of transplanting and direct sowing on productive properties and earliness of sweet corn. Chilean Journal of Agricultural Research, 81(1), 39–45. https://doi.org/10.4067/S0718-58392021000100039

Giovannetti. M., and M. B. (1980). An Evaluation of Techniques For Measuring Vesikular Arbuscular Mycorrhizal Infection in Roots. The New Phytologist, 1980, 84, 489–500. https://nph.onlinelibrary.wiley.com/doi/abs/10.111

Grace A.M, C. N. N. M., Nkemnkeng Francoline Jong, Y. B. K., & Elodie, & M. T. A. (2020). Rate of Echinops Giganteus Serum Biochemical Parameters Effect of Transplant Growth Stage Range Extension of Micrurus Camilae Global Journal of Science Frontier Research : C Biological Science. Global Journal, 2020,20(6).

Harman, G. E. (2006). Overview of mechanisms and uses of Trichoderma spp. Phytopathology, 96(2), 190–194. https://doi.org/10.1094/PHYTO-96-0190

Harman, G. E., Petzoldt, R., Comis, A., & Chen, J. (2004). Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythiuin ultimum and Colletotrichum graminicola. Phytopathology, 94(2), 147–153. https://doi.org/10.1094/PHYTO.2004.94.2.147

Heike Bücking and Arjun Kafle. (2015). Role of Arbuscular Mycorrhizal Fungi in the Nitrogen Uptake of Plants: Current Knowledge and Research Gaps. Agronomy, 5, 587–612. https://doi.org/10.3390/agronomy5040587

Ingraffia, R., Amato, G., Hernández, M. A. S., Frenda, A. S., Rillig, M. C., & Giambalvo, D. (2020). Nitrogen Type and Availability Drive Mycorrhizal Effects on Wheat Performance, Nitrogen Uptake and Recovery, and Production Sustainability. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2020.00760

Jarosz, Z., Michałojć, Z., Pitura, K., Dzida, K., & Koter, M. (2021). Influence of fertilization and mycorrhizae on the nutritional status of rhododendron (Rhododendron hybridum) in a nursery. Agriculture (Switzerland), 11(6). https://doi.org/10.3390/agriculture11060538

Junior, C. F., Chagas1, L. F. B., Miller2, L. de O., & Oliveira2Chagas, and J. C. de. (2019). Efficiency of Trichoderma asperellum UFT 201 as plant growth promoter in soybean. African Journal of Agricultural Research, 14(5), 263–271. https://doi.org/10.5897/AJAR2018.13556

Kung’u, J. B., Lasco, R. D., Cruz, L. U. D., Cruz, R. E. D., & Husain, T. (2008). Effect of vesicular arbuscular mycorrhiza (VAM) fungi inoculation on coppicing ability and drought resistance of Senna spectabilis. Pakistan Journal of Botany, 40(5), 2217–2224.

Lao, F., & Giusti, M. M. (2016). Quantification of Purple Corn (Zea mays L.) Anthocyanins Using Spectrophotometric and HPLC Approaches: Method Comparison and Correlation. Food Analytical Methods, 9(5), 1367–1380. https://doi.org/10.1007/s12161-015-0318-0

Lehmann, A., Veresoglou, S. D., Leifheit, E. F., & Rillig, M. C. (2014). Arbuscular mycorrhizal influence on zinc nutrition in crop plants - A meta-analysis. Soil Biology and Biochemistry, 69, 123–131. https://doi.org/10.1016/j.soilbio.2013.11.001

McFarland, J. W., Ruess, R. W., Kielland, K., Pregitzer, K., Hendrick, R., & Allen, M. (2010). Cross-ecosystem comparisons of in situ plant uptake of amino acid-N and NH4+. Ecosystems, 13(2), 177–193. https://doi.org/10.1007/s10021-009-9309-6

Miransari, M. (2011). Arbuscular mycorrhizal fungi and nitrogen uptake. Archives of Microbiology, 193(2), 77–81. https://doi.org/10.1007/s00203-010-0657-6

Nasahi, C. (2010). PERAN MIKROBA DALAM PERTANIAN ORGANIK. In FAKULTAS PERTANIAN UNIVERSITAS PADJADJARAN BANDUNG.

Ozdemir, G., Akpinar, C., Sabir, A., Bilir, H., Tangolar, S., & Ortas, I. (2010). Effect of inoculation with mycorrhizal fungi on growth and nutrient uptake of grapevine genotypes (Vitis spp.). European Journal of Horticultural Science, 75(3), 103–110.

Parapasan Y., D., & Gusta, A. R. (2014). Waktu dan Cara Aplikasi Cendawan Mikoriza Arbuskular (CMA) pada Pertumbuhan Bibit Tanaman Kopi The Time and Applications Method of Vesicular Arbuscular Mycorrhizae (VAM) on Growth of Coffee Seedlings. Jurnal Penelitian Pertanian Terapan, 13(3), 203–208.

Prayudyaningsih, R., & Sari, R. (2016). Aplikasi Fungi Mikoriza Arbuskula (FMA) dan Kompos untuk Meningkatkan Pertumbuhan Semai Jati (Tectona grandis Linn.f.) pada Media Tanah Bekas Tambang Kapur. Jurnal Penelitian Kehutanan Wallacea, 5(1), 37–46.

Rewald, B., Holzer, L., & Göransson, H. (2015). Arbuscular mycorrhiza inoculum reduces root respiration and improves biomass accumulation of salt-stressed Ulmus glabra seedlings. Urban Forestry and Urban Greening, 14(2), 432–437. https://doi.org/10.1016/j.ufug.2015.04.011

Rudresh, D. L., Shivaprakash, M. K., & Prasad, R. D. (2005). Tricalcium phosphate solubilizing abilities of Trichoderma spp. in relation to P uptake and growth and yield parameters of chickpea (Cicer arietinum L.). Canadian Journal of Microbiology, 51(3), 217–222. https://doi.org/10.1139/w04-127

Sani, B., & Farahani, H. A. (2010). Effect of P 2 O 5 on coriander induced by AMF under water deficit stress. 2(April), 52–58.

Saravanakumar, K., Shanmuga Arasu, V., & Kathiresan, K. (2013). Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina. Aquatic Botany, 104, 101–105. https://doi.org/10.1016/j.aquabot.2012.09.001

Selvakumar, G., & Thamizhiniyan, P. (2011). The Effect of the Arbuscular Mycorrhizal ( AM ) Fungus Glomus intraradices on the Growth and Yield of Chilli ( Capsicum annuum L .) Under Salinity Stress. 14(8), 1209–1214.

Sharma, P., Vignesh Kumar, P., Ramesh, R., Saravanan, K., Deep, S., Sharma, M., Mahesh, S., & Dinesh, S. (2011). Biocontrol genes from Trichoderma species: A review. African Journal of Biotechnology, 10(86), 19898–19907. https://doi.org/10.5897/AJBX11.041

Shukla, N., Awasthi, R. P., Rawat, L., & Kumar, J. (2012). Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry, 54, 78–88. https://doi.org/10.1016/j.plaphy.2012.02.001

Suhesti E, Eko Widaryanto, B. W. and S. W. (2018). Bioscience Research. 15(2), 1004–1011.

Thirkell, T. (2019). Contrasting Nitrogen Fertilisation Rates Alter Mycorrhizal Contribution to Barley Nutrition in a Field Trial. Frontiers in Plant Science, 10(October), 1–9. https://doi.org/10.3389/fpls.2019.01312

Turk, M. A., Assaf, T. A., & Hameed, K. M. (2006). Significance of Mycorrhizae. 2(1), 16–20.

Yang, Z., & Zhai, W. (2010). Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innovative Food Science and Emerging Technologies, 11(3), 470–476. https://doi.org/10.1016/j.ifset.2010.03.003

Downloads

Published

2023-09-21

How to Cite

Giono, B. R. W., Hadija, H., & Idrus, M. I. . (2023). Aplications of Vesicular Arbuscular Mycorrhizes (Vam) and Trichoderma Sp: Aplications of Vesicular Arbuscular Mycorrhizes (VAM) and Trichoderma sp With Transplanting Age For of Purple Corn Seeds (Zea Mays Var Ceratina Kulesh). Jurnal Penelitian Pertanian Terapan, 23(3), 429-441. https://doi.org/10.25181/jppt.v23i3.2439

Issue

Section

Artikel