Phenol Levels And Antidiabetic Functional Drinks Combination Of Black Tea And Singkil (Premna serrafolia)


  • Encik Eko Rifkowaty Teknologi Pengolahan Hasil Perkebunan, Jurusan Pengelolaan Hasil Perkebunan.
  • Martanto Martanto Teknologi Pengolahan Hasil Perkebunan, Jurusan Pengelolaan Hasil Perkebunan, Politkenik Negeri Ketapang.
  • Nenengsih Verawaty Teknologi Pengolahan Hasil Perkebunan, Jurusan Pengelolaan Hasil Perkebunan, Politkenik Negeri Ketapang.
  • Dani Purwanto Teknologi Pengolahan Hasil Perkebunan, Jurusan Pengelolaan Hasil Perkebunan, Politkenik Negeri Ketapang.



Diabetes is a degenerative disease that can arise due to unhealthy lifestyles. Until now there is no cure for this disease, but this disease can be minimized or prevented by consuming healthy food or functional food. Tea-based functional drinks have long been recognized and developed for their potential as an antidiabetic agent. One of them is by combining it with other ingredients like herbal plants. This study processed a black tea-based functional beverage combined with singkil leaves and stems. The purpose of this study was to determine the inhibitory enzymes and phenol content of black tea products combined with single leaf tea, and stem. Based on the analysis, all samples, both consisting of one composition or from the combination, generally have varying phenol levels. The highest inhibitory ability is possessed by tea samples which are categorized as strong, while the lowest inhibitory value is on black tea and singkil tea (THS2) with an IC50 value of 106,236. Based on the parameters of the observation of phenol levels, samples that have the highest phenol content are black tea (182,586 µg GEA / 100 g sample) while the sample with the lowest phenol content is tea (6,413 µg GEA / 100 g sample). All samples showed the ability to inhibit the alpha-glucosidase enzyme with a range between medium to strong. Phenol content is the only parameter used in this study. The overall sample showed the higher phenol levels have the enzyme inhibitory ability which tends to decrease. There may be a role from other indigenous secondary metabolite compounds that are not yet known from this study apart from compounds that arise due to the effects of the processing, such as. The results of the correlation test analysis showed a strong relationship between phenol contains and enzyme inhibitory properties (R = 0,765).   Key Word: black tea, singkil, Premna seratifolia, antidiabetes, phenol


Download data is not yet available.


Ali, A. M., Gabbar, M. A., Abdel-Twab, S. M., Fahmy, E. M., Ebaid, H., Alhazza, I. M., & Ahmed, O. M. (2020). Antidiabetic Potency, Antioxidant Effects, and Mode of Actions of Citrus reticulata Fruit Peel Hydroethanolic Extract, Hesperidin, and Quercetin in Nicotinamide/Streptozotocin-Induced Wistar Diabetic Rats. Oxidative Medicine and Cellular Longevity, 2020.

Anderson, R. A., & Polansky, M. M. (2002). Tea enhances insulin activity. Journal of Agricultural and Food Chemistry, 50(24), 7182–7186.

Banerjee, A., Maji, B., Mukherjee, S., Chaudhuri, K., & Seal, T. (2017). in Vitro Anti-Diabetic and Anti-Oxidant Activities of Ethanol Extract of Tinospora Sinensis. International Journal of Current Pharmaceutical Research, 9(2), 42.

Bhattacharjee, C., & Bharadwaz, A. (2012). Extraction of Poly phenols from Dried Tea Leaves. International Journal of Scientific and Engineering Research, 3(5), 1–5.

Cunha, J. da S. M. da, Alfredo, T. M., Santos, J. M. dos, Junior, V. V. A., Rabelo, L. A., Lima, E. S., Boleti, A. P. de A., Carollo, C. A., Santos, E. L. dos, & Souza, K. de P. (2018). Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea. PLoS ONE, 13(6), 1–17.

D’Ulivo, L. (2018). Solution to pink tea challenge. Analytical and Bioanalytical Chemistry, 410(1), 19–20.

Dasgupta, N., Muthukumar, S. P., & Murthy, P. S. (2016). Solanum nigrum leaf: Natural food against diabetes and its bioactive compounds. Research Journal of Medicinal Plant, 10(2), 181–193.

De Almeida, T. S., Araújo, M. E. M., Rodríguez, L. G., Júlio, A., Mendes, B. G., Santos, R. M. B. Dos, & Simões, J. A. M. (2019). Influence of preparation procedures on the phenolic content, antioxidant and antidiabetic activities of green and black teas. Brazilian Journal of Pharmaceutical Sciences, 55, 1–10.

Deswati, D. A., & Maryam, Z. N. (2016). Aktivitas Antidiabetes Mellitus Teh Hitam Jenis Mutu Rendah pada Mencit Putih Jantan yang diinduksi Aloksan. Jurnal Penelitian Teh Dan Kina, 19(2), 208–214.

Dianita, R., & Jantan, I. (2017). Ethnomedicinal uses, phytochemistry and pharmacological aspects of the genus Premna: A review. Pharmaceutical Biology, 55(1), 1715–1739.

Gawli, K., & Lakshmidevi, N. (2015). Antidiabetic and antioxidant potency evaluation of different fractions obtained from Cucumis prophetarum fruit. Pharmaceutical Biology, 53(5), 689–694.

Gulua, L., Nikolaishvili, L., Jgenti, M., Turmanidze, T., & Dzneladze, G. (2018). Polyphenol content, anti-lipase and antioxidant activity of teas made in Georgia. Annals of Agrarian Science, 16(3), 357–361.

Harbourne, N., Marete, E., Jacquier, J. C., & O’Riordan, D. (2009). Effect of drying methods on the phenolic constituents of meadowsweet (Filipendula ulmaria) and willow (Salix alba). LWT - Food Science and Technology, 42(9), 1468–1473.

Horžić, D., Komes, D., Belščak, A., Ganić, K. K., Iveković, D., & Karlović, D. (2009). The composition of polyphenols and methylxanthines in teas and herbal infusions. Food Chemistry, 115(2), 441–448.

Jolvis Pou, K. R. (2016). Fermentation: The Key Step in the Processing of Black Tea. Journal of Biosystems Engineering, 41(2), 85–92.

Karadaǧ, A., Avci, N., Kasapoǧlu, K. N., & Özçelik, B. (2016). Effect of microwave technology on some quality parameters and sensory attributes of black tea. Czech Journal of Food Sciences, 34(5), 397–405.

Kusmiyati, M., Sudaryat, Y., Lutfiah, I. A., Rustamsyah, A., & Rohdiana, D. (2015). Aktifitas Antioksidan Kadar Fenol Total Dan Flavonoid Total Teh Hijau (Camellia Sinensi (L.) O Kuntze) Asal Tiga Perkebunan Jawa Barat. Jurnal Penelitian Teh Dan Kina, 18(2), 101–106.

Lu, T. H., Lai, M. S., Anderson, R. N., & Huang, C. N. (2007). Diabetes reporting as a cause of death: Results from the Translating Research into Action for Diabetes (TRIAD) study: Response to McEwen et al. [16]. Diabetes Care, 30(5), 2881.

Makanjuola, S. A. (2017). Influence of particle size and extraction solvent on antioxidant properties of extracts of tea, ginger, and tea–ginger blend. Food Science and Nutrition, 5(6), 1179–1185.

Malviya, N., Jain, S., & Malviya, S. (2010). Antidiabetic potential of medicinal plants. Acta Poloniae Pharmaceutica - Drug Research, 67(2), 113–118.

McAlpine, M. D., & Ward, W. E. (2016). Influence of steep time on polyphenol content and antioxidant capacity of black, green, rooibos, and herbal teas. Beverages, 2(3).

Meneses, M., Silva, B., Sousa, M., Sá, R., Oliveira, P., & Alves, M. (2015). Antidiabetic Drugs: Mechanisms of Action and Potential Outcomes on Cellular Metabolism. Current Pharmaceutical Design, 21(25), 3606–3620.

Meng, J. M., Cao, S. Y., Wei, X. L., Gan, R. Y., Wang, Y. F., Cai, S. X., Xu, X. Y., Zhang, P. Z., & Li, H. Bin. (2019). Effects and mechanisms of tea for the prevention and management of diabetes mellitus and diabetic complications: An updated review. Antioxidants, 8(6).

Meselhy, K. M., Abdel-Latif, G. A., Sleem, A. A., Ayman, W., Imam, M. K., Kassab, K. A., & Eissa, S. (2019). Influence of milk on phenolic composition and antioxidant power of black tea. Pharmacognosy Journal, 11(6), 1262–1268.

Namdev, P., & Gupta, R. K. (2015). Herbal green tea formulation using Withania somnifera stems , Terminalia arjuna bark , Cinnamon bark and Tinospora cordifolia stems and nutritional & phytochemical analysis. Journal of Pharmacognosy and Phytochemistry, 4(2), 282–291.

Ochanda, S. O., Wanyoko, J. K., & Ruto, H. K. (2015). Antioxidant Capacity and Consumer Acceptability of Spiced Black Tea. Journal of Food Research, 4(6), 104.

Oduro, I., Twumasi, P., Tandoh, M., Ankar-Brewoo, G., & De-Heer, N. (2013). Formulation and sensory evaluation of herbs tea from Moringa oleifera, Hibiscus sabdariffa and Cymbopogon citratus. African Journal Online, 15(1), 1–10.

Okafor, G. I., & Ogbobe, N. M. (2015). Production and Quality Evaluation of Green and Black Herbal Teas from Moringa oleifera Leaf. Journal of Food Resource Science, 4(3), 62–72.

Onyekwelu, C. N., Oragba, N. C. (2019). Development , Quality Evaluation and Acceptability of Green Tea from pawpaw , Utazi and moringa leaveas. 5(3), 26–34.

Othman, A. I., El-Sawi, M. R., El-Missiry, M. A., & Abukhalil, M. H. (2017). Epigallocatechin-3-gallate protects against diabetic cardiomyopathy through modulating the cardiometabolic risk factors, oxidative stress, inflammation, cell death and fibrosis in streptozotocin-nicotinamide-induced diabetic rats. Biomedicine and Pharmacotherapy, 94(October), 362–373.

Pathak, M. (2014). Diabetes Mellitus Type 2 and Functional Foods of Plant Origin. Recent Patents on Biotechnology, 8(2), 160–164.

Rohdiana, D., Deswati, D. A., Suharti, A., Maulana, H., & Kusmiyati, M. (2016). Antidiabetic activity of first grade orthodox black tea in alloxan induced male albino mice. International Journal of Pharmaceutical and Clinical Research, 8(8), 1175–1177.

Roy, N., Bhattacharjee, K., Bandhopadhyaya, S., Chatterjee, S., Saha, A. K., Chatterjee, A., Saha, A., Roy, S., & Maity, C. (2016). Effect of Black Tea on Diabetes and Metabolic Syndrome. The Indian Journal of Nutrition and Dietetics, 53(3), 354.

Sarkar, D., Dutta, D., Mandal, S. C., & Bose, S. (2018). Role of Tea Polyphenols in Diabetes. The Pharma Review, September-October, 109–117.

Sharon Saydah, Imperatore, G., Geiss, L., & Gregg, E. (2012). National Diabetes Month — November 2012 Diabetes Death Rates Among Youths Aged ≤ 19 Years — United States, 1968 – 2009. MMWR, Morbidity & Mortality Weekly Report, 61(43), 2008–2010.

Tahirović, I., Kožljak, M., Toromanović, J., Čopra-Janićijević, A., Klepo, L., Topčagić, A., & Demirović, H. (2014). Total phenolic content and antioxidant capacity in infusions of various herbal teas. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 42(1), 51–55.

Timotius, K. H., Simamora, A., & Santoso, A. W. (2018). Chemical characteristics and in vitro antidiabetic and antioxidant activities of premna serratifolia L. leaf infusion and decoction. Pharmacognosy Journal, 10(6), 1114–1118.

Waltner-Law, M. E., Wang, X. L., Law, B. K., Hall, R. K., Nawano, M., & Granner, D. K. (2002). Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. Journal of Biological Chemistry, 277(38), 34933–34940.

Yang, J. J., Yu, D., Wen, W., Saito, E., Rahman, S., Shu, X. O., Chen, Y., Gupta, P. C., Gu, D., Tsugane, S., Xiang, Y. B., Gao, Y. T., Yuan, J. M., Tamakoshi, A., Irie, F., Sadakane, A., Tomata, Y., Kanemura, S., Tsuji, I., … Zheng, W. (2019). Association of Diabetes with All-Cause and Cause-Specific Mortality in Asia: A Pooled Analysis of More Than 1 Million Participants. JAMA Network Open, 2(4).

Yang, X., & Kong, F. (2016). Evaluation of the in vitro α-glucosidase inhibitory activity of green tea polyphenols and different tea types. Journal of the Science of Food and Agriculture, 96(3), 777–782.




How to Cite

Fitriarni, D., Eko Rifkowaty, E. ., Martanto, M., Verawaty , N. ., & Purwanto, D. . (2022). Phenol Levels And Antidiabetic Functional Drinks Combination Of Black Tea And Singkil (Premna serrafolia). Jurnal Penelitian Pertanian Terapan, 22(3), 267-278.