Respons Tanaman Padi Varietas Inpari Terhadap Mutagen Sodium Azide

Authors

  • Yugi R Ahadiyat UNIVERSITAS JENDERAL SOEDIRMAN
  • Armida Triani
  • Siti Nurchasanah

DOI:

https://doi.org/10.25181/jppt.v21i1.1996

Abstract

The objective of this study was to study the response of rice cv. Inpari to soaking time in sodium azide mutagen in terms of sensitivity, seedling performance, and genetic distance based on morphological characters. An experiment was conducted using a split-plot design with rice variety (Inpari 31, 32, and 33) as the main plot, and the soaking time in sodium azide (0, 5, 10, 15, and 20 hours) as the subplot. The result showed that Inpari 32 had more sensitivity, and higher germination and seedling growth performance compared to Inpari 31 and 33. The closest phylogenetic relationship occurred between Inpari 31 and 33 without mutagen, and between inpari 32 and 33 with a soaking time of sodium azide 10 and 20 hours

Downloads

Download data is not yet available.

Author Biography

Yugi R Ahadiyat, UNIVERSITAS JENDERAL SOEDIRMAN

Department of Agrotechnology

References

Bradbeer, J. W. (1988). Seed viability and vigour. In Seed Dormancy and Germination (pp. 95–109). Springer, Boston, MA. https://link.springer.com/chapter/10.1007%2F978-1-4684-7747-4_8.

Cabahug, R. A. M., Ha, M. K. T. T., Lim, K.-B., & Hwang, Y.-J. (2020). LD50 determination and phenotypic evaluation of three Echeveria varieties induced by chemical mutagens. Toxicology and Environmental Health Sciences, 12(1), 1–9. https://doi.org/10.1007/s13530-020-00049-3.

Dewi, K., Meidiana, G., Sudjino, & Suharyanto. (2016). Effects of sodium azide (NaN3) and cytokininon vegetative growth and yield of black rice plant (Oryza sativa L. ‘Cempo Ireng’). International Conference on Science and Technology, 130005. https://doi.org/10.1063/1.4958549.

Fajriyah, N., Karno, K., & Kusmiyati, F. (2019). Induksi mutasi kedelai (Glycine max (L.) Merrill) dengan sodium azide pada tanah salin. Journal of Agro Complex, 3(1), 1–8. https://doi.org/10.14710/joac.3.1.1-8.

Goulet, B. E., Roda, F., & Hopkins, R. (2017). Hybridization in plants: Old Ideas, new techniques. Plant Physiology, 173(1), 65–78. https://doi.org/10.1104/pp.16.01340.

Gruszka, D., Szarejko, I., & Maluszynski, M. (2012). Sodium azide as a mutagen. In Q. Y. Shu, B. P. Forster, & H. Nakagawa (Eds.), Plant mutation breeding and biotechnology (pp. 159–166). CABI. https://doi.org/10.1079/9781780640853.0159.

Herwibawa, B., Haryanto, T. A. D., & Sakhidin, S. (2014a). Peroxidase isozyme identification of some rice genotypes in M1 generation under drought stress level of -0.03 mpa. AGRIVITA, 36(3), 2010–2216. https://doi.org/10.17503/Agrivita-2014-36-3-210-216.

Herwibawa, B., Haryanto, T. A. D., & Sakhidin, S. (2014b). The effect of gamma irradiation and sodium azide on germination of some rice cultivars. AGRIVITA, 36(1), 26–32. https://doi.org/10.17503/Agrivita-2014-36-1-p026-032.

Herwibawa, B., & Kusmiyati, F. (2017). Mutagenic effects of sodium azide on the germination in rice (Oryza sativa L). Cv. Inpago Unsoed 1. Jurnal Agroteknologi, 7(2), 9–14. https://doi.org/10.24014/ja.v7i2.2759.

Human, S., Loekito, S., Trilaksono, M., & Syaifudin, A. (2017). Pemuliaan mutasi tanaman nanas (Ananas comosus (L.) Merr.) menggunakan iradiasi gamma untuk perbaikan varietas nanas smooth cayenne. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 12(1), 13–21. https://doi.org/10.17146/jair.2016.12.1.3197.

Ikhajiagbe, B., & Omoregie, U. E. (2020). Growth, yield, genetic parameters and random amplified polymorphic DNA (RAPD) of five rice varieties treated with sodium azide and sown under different saline conditions. Bulletin of the National Research Centre, 44(1), 89. https://doi.org/10.1186/s42269-020-00344-6.

Lesilolo, M. K., Riry, J., & Matatula, E. A. (2013). Pengujian viabilitas dan vigor benih beberapa jenis tanaman yang beredar di pasaran kota Ambon. Agrologia, 2(1), 1–9. https://doi.org/10.30598/a.v2i1.272.

Nuraida, D. (2012). Pemuliaan tanaman cepat dan tepat melalui pendekatan marka molekuler. el–Hayah, 2(2), 97–103. https://doi.org/10.18860/elha.v2i2.2210.

Nurhidayah, T., Ali, M., & Asha, D. (2017). Pengaruh kosentrasi mutagen sodium azide (NAN3) terhadap daya kecambah dan keragaan bibit padi gogo varietas jambek rotan generasi M-1. Jurnal Agroteknologi Tropika, 6(2), 62–67.

Omoregie, U. E., Mensah, J. K., & Ikhajiagbe, B. (2014). Germination response of five rice varieties treated with sodium azide. Research Journal of Mutagenesis, 4(1), 14–22. https://doi.org/10.3923/rjmutag.2014.14.22.

Prabawa, P. S., & Purba, J. H. (2019). Identifikasi perubahan fenotip padi beras hitam (Oryza sativa L.) var cempo ireng hasil perlakuan kolkisin. Agro Bali: Agricultural Journal, 2(1). https://doi.org/10.37637/ab.v2i1.364.

Rohlf, F. J. (2009). NTSYSpc numerical taxonomy and multivariate analysis system. Applied Biostatistics Inc. https://www.researchgate.net/publication/246982444_NTSYS-pc_-_Numerical_Taxonomy_and_Multivariate_Analysis_System.

Shu, Q. Y., Forster, B. P., & Nakagawa, H. (Eds.). (2012). Plant mutation breeding and biotechnology. CABI International.

Shehzad, T., Allah, A., Ammar, M. H., & Abdelkhalik, A. F. (2011). Agronomic and molecular evaluation of induced mutant rice (Oryza sativa L.) lines in Egypt. Pakistan Journal of Botany, 43(2), 1183–1194.

Sobrizal. (2016). Potensi pemuliaan mutasi untuk perbaikan varietas padi lokal Indonesia. Jurnal Ilmiah Aplikasi Isotop dan Radiasi, 12(1), 23–35. https://doi.org/10.17146/jair.2016.12.1.3198.

Swasono, M. S. I., & Aini, N. (2019). Pengaruh Formulasi Nutrisi dan Konsentrasi Asam Giberelin pada Pertumbuhan dan Hasil Tanaman Ciplukan (Physalis peruviana L.) Melalui Sistem Hidroponik Irigasi Tetes. Jurnal Produksi Tanaman, 7(11), 2067–2076.

Takama, T., Setyani, P., & Aldrian, E. (2014). Climate change vulnerability to rice paddy production in Bali, Indonesia. In W. Leal Filho (Ed.), Handbook of Climate Change Adaptation (pp. 1–23). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40455-9_84-1.

Tambunan, R. R., Sari, S., Saragih, Y., Carsono, N., & Wicaksana, N. (2019). Studi kekerabatan padi hasil piramidisasi berbasis marka molekuler dan fenotipik. Agrikultura, 30(3), 100–108. https://doi.org/10.24198/agrikultura.v30i3.23882.

Viana, V. E., Pegoraro, C., Busanello, C., & Costa de Oliveira, A. (2019). Mutagenesis in rice: The basis for breeding a new super plant. Frontiers in Plant Science, 10, 1326. https://doi.org/10.3389/fpls.2019.01326.

Wang, C. T., Wang, X. Z., Zhang, S. W., Li, G. J., Zhang, J. C., & Yu, S. L. (2011). Sodium azide mutagenesis resulted in a peanut plant with elevated oleate content. Electronic Journal of Biotechnology, 14(2). https://doi.org/10.2225/vol14-issue2-fulltext-4.

Widyasmara, N. I., Kusmiyati, F., & Karno. (2018). Efek xenia dan metaxenia pada persilangan tomat ranti dan tomat cherry. Journal of Agro Complex, 2(2), 128–136. https://doi.org/10.14710/joac.2.2.128-136.

Yanti, Y. (2012). Aktivitas peroksidase mutan pisang kepok dengan ethyl methane sulphonate (EMS) secara in vitro 1. Jurnal Natur Indonesia, 14(1), 32–36. https://doi.org/10.31258/jnat.14.1.32-36.

Downloads

Published

2021-04-30

How to Cite

R Ahadiyat, Y. ., Triani, A., & Nurchasanah, S. (2021). Respons Tanaman Padi Varietas Inpari Terhadap Mutagen Sodium Azide. Jurnal Penelitian Pertanian Terapan, 21(1), 51-60. https://doi.org/10.25181/jppt.v21i1.1996

Issue

Section

Artikel