Dampak Perubahan Iklim Terhadap Kualitas Udara Pada Peternakan Unggas: Systematic Literature Review
DOI:
https://doi.org/10.25181/peterpan.v6i1.3433Keywords:
air quality, climate change, poultry, temperatureAbstract
The Impact of climate change in poultry farming through increased ambient temperatures. Poor air quality also has serious consequences related to the spread of dust particles and toxic chemicals from poultry waste. The aims this study, based on the description above is to see the relationship between increased ambient temperature and air quality in poultry farms. This study used a systematic literature review method with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach. The results obtained from 12 articles related to climate change on air quality in poultry farms. Literature results show that air quality monitoring involves parameters such as NH3, CO2, SO2, NOx, CH4, PM2.5, and PM10 with various measurement methods. The temperature and humidity of the poultry environment are critical to achieving optimal conditions for livestock welfare and growth. Keywords: Air Quality, Climate Change, Poultry, Temperature,Downloads
References
Abustan, Pudjirahaju, A., dan Arsyad, M. 2019. Reducing ammonia gas from chicken manure with lime and soybean plants. Environmental Quality Management. 28(4): 49—56. https://doi.org/10.1002/tqem.21635
Al-Nasseri, A. N. I., Taha, A. T., dan Khalaf Hasan, A. T. 2021. Effects of different broiler flooring systems on surface temperature, air quality and carcass characters of broilers. IOP Conference Series: Earth and Environmental Science, 735(1). https://doi.org/10.1088/1755-1315/735/1/012011
Cândido, M. G. L., Xiong, Y., Gates, R. S., Tinôco, I. F. F., dan Koelkebeck, K. W. 2018. Effects of carbon dioxide on turkey poult performance and behavior. Poultry Science, 97(8): 2768–2774. https://doi.org/10.3382/ps/pey128
Chi, Q., Chi, X., Hu, X., Wang, S., Zhang, H., dan Li, S. 2018. The effects of atmospheric hydrogen sulfide on peripheral blood lymphocytes of chickens: Perspectives on inflammation, oxidative stress and energy metabolism. Environmental Research, 167: 1–6. https://doi.org/10.1016/j.envres.2018.06.051
El-Deep, M. H., Dawood, M. A. O., Assar, M. H., Ijiri, D., dan Ohtsuka, A. 2019. Dietary Moringa oleifera improves growth performance, oxidative status, and immune related gene expression in broilers under normal and high temperature conditions. Journal of Thermal Biology, 82: 157—163. https://doi.org/10.1016/j.jtherbio.2019.04.016
Eugene, B., Moore, P. A., Li, H., Miles, D., Trabue, S., Burns, R., dan Buser, M. 2015. Effect of alum additions to poultry litter on in-house ammonia and greenhouse gas concentrations and emissions. Journal of Environmental Quality, 44(5): 1530—1540. https://doi.org/10.2134/
jeq2014.09.0404
Karaman S, Gokalp Z. 2017. Indoor air quality in animal housing systems (gas, odor and dust). Current Trends in Natural Sciences 6 (12): 67—271.
Kalus, K., Konkol, D., Korczyński, M., Koziel, J. A., dan Opaliński, S. 2020. Effect of biochar diet supplementation on chicken broilers performance, NH3 and odor emissions and meat consumer acceptance. Animals 10 (9): 1–13. https://doi.org/10.3390/ani10091539
Lacetera, N. 2019. Impact of climate change on animal health and welfare. Animal Frontiers 9(1): 26–31. https://doi.org/10.1093/af/vfy030
Liu, Z., dan Liu, Y. 2018. Mitigation of greenhouse gas emissions from animal production. In Greenhouse Gases: Science and Technology 8 (4): 627–638. https://doi.org/10.1002/ghg.1785
Ni, J. Q., Erasmus, M., Jones, D. R., dan Campbell, D. L. M. 2023. Effectiveness and characteristics of a new technology to reduce ammonia, carbon dioxide, and particulate matter pollution in poultry production with artificial turf floor. Environmental Technology and Innovation, 29. https://doi.org/10.1016/j.eti.2022.102976.
Nurhidayah, A.F., Niken, U., dan Salundik. 2022). Peningkatan hidrogen sulfida, partikel debu 10 µm dan diferensiasi leukosit pada pemeliharaan ayam broiler dengan suhu ruang berbeda. Jurnal Peternakan Sriwijaya 12 (1) : 41—49.
Ogunleye, T. J., Taiwo, A. M., Akinhannmi, T. F., Oyediran, L. O., dan Arowolo, T. A. 2022. Assessment of air quality, health status and lung function of workers from selected poultry management systems in Ogun State, Nigeria. Clinical Epidemiology and Global Health, 18. https://doi.org/10.1016/j.cegh.2022.101159
Pereira, J. L. S., Ferreira, S., Pinheiro, V., dan Trindade, H. 2018. Ammonia, Nitrous oxide, carbon dioxide and methane emissions from commercial broiler houses in Mediterranean Portugal. Water, Air, and Soil Pollution, 229(12). https://doi.org/10.1007/s11270-018-4026-4
Pokharel, B. B., Dos Santos, V. M., Wood, D., Van Heyst, B., dan Harlander-Matauschek, A. 2017. Laying hens behave differently in artificially and naturally sourced ammoniated environments. Poultry Science, 96(12): 4151–4157. https://doi.org/10.3382/ps/pex273
Scanes, C. G., dan Christensen, K. D. 2020. Scanes, C. G., Christensen, K. D. 2020. Poultry Houses and Equipment. Poultry Science, Fifth Edition. Waveland Press, Inc. USA, pp. 273-280.
Shen, D., Wu, S., Dai, P. Y., Li, Y. S., dan Li, C. M. 2018. Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poultry Science, 97(12): 4137–4159. https://doi.org/10.3382/ps/pey285
Sousa, F. C., Tinôco, I. F. F., Barbari, M., Baptista, F., Souza, C. F., Saraz, A. O., Coelho, D. J. R., dan Silva, A. L. 2018. Diagnosis of air quality in broilers production facilities in hot climates. Agronomy Research, 16(2): 582–592. https://doi.org/10.15159/AR.18.070
Van Harn, J., Aarnink, A. J. A., Mosquera, J., dan Ogink, N. W. M. 2010. Effect of bedding material on dust and ammonia emission from broiler houses. ASABE - International Symposium on Air Quality and Waste Management for Agriculture 2010, 325–330. https://doi.org/10.13031/2013.41249
Wang, Y., Xia, L., Guo, T., Heng, C., Jiang, L., Wang, D., Wang, J., Li, K., dan Zhan, X. 2020. Research Note: Metabolic changes and physiological responses of broilers in the final stage of growth exposed to different environmental temperatures. Poultry Science, 99(4): 2017–2025. https://doi.org/10.1016/j.psj.2019.11.048
Wasti, S., Sah, N., dan Mishra, B. 2020. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10(8): 1–19. https://doi.org/10.3390/ani10081266
Zhao, Y., Shepherd, T. A., Li, H., dan Xin, H. 2015. Environmental assessment of three egg production systems- Part I: Monitoring system and indoor air quality. Poultry Science 94(3): 518–533. https://doi.org/10.3382/ps/peu076
Zheng, W., Xiong, Y., Gates, R. S., Wang, Y., dan Koelkebeck, K. W. 2020. Air temperature, carbon dioxide, and ammonia assessment inside a commercial cage layer barn with manure-drying tunnels. Poultry Science, 99(8): 3885–3896. https://doi.org/10.1016/j.psj.2020.05.009
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 PETERPAN (Jurnal Peternakan Terapan)
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.