Predicting onion production through Neuro-Fuzzy to fulfill national demand

Penulis

  • Tri Sandhika Jaya
  • Henry Kurniawan

DOI:

https://doi.org/10.25181/esai.v8i1.975

Abstrak

Onion prices experienced a sharp rise in prices, because there was not enough stock to meet the demand. Hence more onion production to meet those needs is required. Onion production is influenced by the harvested area and productivity. Determining the amount of onion production can be done through prediction. Predictions made by the neuro-fuzzy method in this study combine two concepts, namely the concept of fuzzy logic and neural networks. The results of the research are obtained by comparing the real data with the predicted results to determine the accuracy of this method.Keywords: production, neuro-fuzzy, fuzzy logic, neural network, predicted

Unduhan

Data unduhan belum tersedia.

Biografi Penulis

Tri Sandhika Jaya

Dosen  pada Program Studi Manajemen Informatika Politeknik Negeri Lampung

Henry Kurniawan

Dosen  pada Program Studi Manajemen Informatika Politeknik Negeri Lampung

Referensi

Cruz, Adriano Joaquim de Oliveira. 2001. Neuro-Fuzzy Control . http:// equipe.nce.ufrj.br/adriano/fuzzy/transparencias/neurofuzzy.ppt diakses Juni 2011

Duda, R.O. Hart, P.E. Stork, D.G.. 2001. Pattern Classification. New York: John Wiley & Sons.

Fitriah, Aidatul. Abadi, Agus Maman. 2011. Aplikasi Model Neuro-Fuzzy untuk Prediksi Tingkat Inflasi di Indonesia. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika 3 Desember 2011 FMIPA UNY : 8 - 20. Yogyakarta.

Fu, L.. 1994. Neural Networks in Computer Intelligence. Singapore: McGraw-Hill Book Co.

Fuad FM, Muhammad. 2011. Prediksi Ketersediaan Beras di Masyarakat Menggunakan Logika Fuzzy dan Jaringan Syaraf Tiruan dalam Upaya Meningkatkan Ketahanan Pangan. Jurnal Agrointek Volume 5 Nomor 1 : 67 – 73.

Iyatomi, H. Hagiwara, M.. 2004. Adaptive Fuzzy Inference neural Network. on Pattern Recognition Society. No. 347 p. 2049-2057.

Jang, J.S.R. 1993. ANFIS : Adaptive- Network-Based Fuzzy. on IEEE Transaction on System, Man, and Cybernetics Volume 23 No. 3 p. 665-685.

Kadir, Abdul. 2010. Identifikasi Tiga Jenis Bunga Iris Menggunakan ANFIS. Jurnal Teknologi Volume 3 No. 1: Yogyakarta.

Suharyanta, Edy. 2006. Arah Pengembangan Agribisnis Bawang Merah di Bantul. Jurnal-jurnal Ilmu Pertanian Volume 2 Nomor 2 : 102 – 111.

##submission.downloads##

Diterbitkan

2021-05-05

Terbitan

Bagian

Artikel