Detecting Resemblance Of Orchid Plant Image Through Support Vector Machine (SVM) Of Kernel Linear Method
DOI:
https://doi.org/10.25181/esai.v8i3.952Abstrak
The research dealt with detecting resemblance of orchid plant image through Support vector machine (SVM) of Kernel Linear method. With one versus rest modeling, the images were taken by using single type camera Canon S550D. The use of trial data and test data varied into for ratio types namely : 50% trial data - 50% test data , 60% trial data - 40% test data , 70% trial data - 30% test data , and 80% trial data - 20% test data. The extract of texture features was done with combining operator circular neighborhood (8,1) and (8,2) and concatenation done through fuzzyfication. The research aimed to (1) design a program to detect the resemblance of orchid plant image (2) implement Support Vector Machine kernel Linear method with one versus Rest model to identify the image of orchid plants both with and without flowers (3) analyze distribution level of accuracy of the four trial and test data examined from each specimen. (4) Analyze resemblance of orchid plant image through Support Vector Machine kernel Linear with one versus Rest model. The research was carried out through: (1) collecting the image and praposes (2) extracting the textures, (3) classifying the Support Vector Machine kernel Linear, (4) data testing and (5) evaluating classification result. The main target of the research is to find out a system to detect the resemblance of orchid plants both with and without flower.Keywords: circular neighborhood, one versus rest, Support Vector Machine kernel LinearUnduhan
Referensi
Lestari S. 2002. Mengenal dan Bertanam Anggrek. Semarang : Aneka Ilmu.
Rustam Z, Kusumoputro B, dan Widjaya B. 2003. Pendekatan Jenis dan Kelas Aroma dengan Menggunakan Metode One Vs One dan Metode One Vs Rest. Jurnal Makara, Sains . Vol.7 No.3. Hal 15-25.
Valerina Fani 2012 . Perbandingan Local Binary Pattern dan Fuzzy Local Binary Pattern untuk Ekstraksi Citra Tumbuhan Obat dan Tanaman Hias [Skripsi]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Intitut Pertanian Bogor.
Vapnik V, Cortes C. 1995. Support-Vector Networks. http://www.springerlink.com/content/w08253ul7m3780v8/fulltext.pdf [3 Februari 2011].
Widyanto MR, Fatichah C. 2008. Studi Analisis Metode Support Vector Mechine dan Boosting untuk deteksi Objek Manusia. Jurnal Teknologi dan Manajemen Informatika 6 : Hal 161-170.
Widyawati Dewi Kania 2012 . Analisis Kinerja Support Vector Machine (SVM) dan Probabilistic Neural Network (PNN) pada identifikasi tumbuhan obat dan tanaman hias Berbasis Citra [tesis]. Bogor: Fakultas Matematika dan Ilmu Pengetahuan Alam, Pascasarjanan Intitut Pertanian Bogor.